Asnaashari, M., Esmaeilzadeh Kenari, R., Farahmandfar, R., Taghdisi, S. M., & Abnous, K. (2018). Fluorescence quenching biosensor for acrylamide detection in food products based on double-stranded DNA and gold nanoparticles. Sensors and Actuators B: Chemical, 265, 339-345. doi:https://doi.org/10.1016/j.snb.2018.03.083
Asnaashari, M., Kenari, R. E., Taghdisi, S. M., Abnous, K., & Farahmandfar, R. (2023). A novel fluorescent DNA sensor for acrylamide detection in food samples based on single-stranded DNA and GelRed. Journal of Fluorescence, 34, 2845–2860. doi: https://doi.org/10.1007/s10895-023-03479-7
Bethke, P. C., & Bussan, A. J. (2013). Acrylamide in Processed Potato Products. American Journal of Potato Research, 90(5), 403-424. doi:10.1007/s12230-013-9321-4
Claeys, W. L., De Vleeschouwer, K., & Hendrickx, M. E. (2005). Effect of amino acids on acrylamide formation and elimination kinetics. Biotechnology Progress, 21(5), 1525-1530.
Elbashir, A. A., Omar, M. M. A., Ibrahim, W. A. W., Schmitz, O. J., & Aboul-Enein, H. Y. (2014). Acrylamide analysis in food by liquid chromatographic and gas chromatographic methods. Critical reviews in analytical chemistry, 44(2), 107-141.
Emrani, A. S., Danesh, N. M., Lavaee, P., Ramezani, M., Abnous, K., & Taghdisi, S. M. (2016). Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles. Food Chemistry, 190, 115-121.
Garabagiu, S., & Mihailescu, G. (2011). Simple hemoglobin–gold nanoparticles modified electrode for the amperometric detection of acrylamide. Journal of electroanalytical chemistry, 659(2), 196-200.
Ghasemian, S., Rezaei, K., Abedini, R., Poorazarang, H., & Ghaziani, F. (2014). Investigation of different parameters on acrylamide production in the fried beef burger using Taguchi experimental design. Journal of food science and technology, 51, 440-448.
Hu, Q., Xu, X., Li, Z., Zhang, Y., Wang, J., Fu, Y., & Li, Y. (2014). Detection of acrylamide in potato chips using a fluorescent sensing method based on acrylamide polymerization-induced distance increase between quantum dots. Biosensors and Bioelectronics, 54, 64-71. doi:http://dx.doi.org/10.1016/j.bios.2013.10.046
Hu, Q., Xu, X., Li, Z., Zhang, Y., Wang, J., & Li, Y. (2013). Rapid detection of acrylamide in food using a fluorescent sensing method based on functional CdSe/ZnS quantum dots. Paper presented at the SENSORS, 2013 IEEE.
Huang, S., Lu, S., Huang, C., Sheng, J., Zhang, L., Su, W., & Xiao, Q. (2016). An electrochemical biosensor based on single-stranded DNA modified gold electrode for acrylamide determination. Sensors and Actuators B: Chemical, 224, 22-30.
Khoshbin, Z., Moeenfard, M., Abnous, K., & Taghdisi, S. M. (2023). Nano-gold mediated aptasensor for colorimetric monitoring of acrylamide: Smartphone readout strategy for on-site food control. Food Chemistry, 399, 133983.
Krajewska, A., Radecki, J., & Radecka, H. (2008). A voltammetric biosensor based on glassy carbon electrodes modified with single-walled carbon nanotubes/hemoglobin for detection of acrylamide in water extracts from potato crisps. Sensors, 8(9), 5832-5844.
Krishnakumar, T., & Visvanathan, R. (2014). Acrylamide in food products: a review. Journal of Food Processing and Technology, 5(7).
Li, C., Ya, Y., & Zhan, G. (2010). Electrochemical investigation of tryptophan at gold nanoparticles modified electrode in the presence of sodium dodecylbenzene sulfonate. Colloids and Surfaces B: Biointerfaces, 76(1), 340-345.
Li, D., Xu, Y., Zhang, L., & Tong, H. (2014). A label-free electrochemical biosensor for acrylamide based on DNA immobilized on graphene oxide-modified glassy carbon electrode. Int. J. Electrochem. Sci, 9, 7217-7227.
Liu, C., Luo, F., Chen, D., Qiu, B., Tang, X., Ke, H., & Chen, X. (2014). Fluorescence determination of acrylamide in heat-processed foods. Talanta, 123, 95-100.
Mojska, H., Gielecińska, I., Zielińska, A., Winiarek, J., & Sawicki, W. (2016). Estimation of exposure to dietary acrylamide based on mercapturic acids level in urine of Polish women post partum and an assessment of health risk. Journal of Exposure Science and Environmental Epidemiology, 26(3), 288-295.
Oracz, J., Nebesny, E., & Żyżelewicz, D. (2011). New trends in quantification of acrylamide in food products. Talanta, 86, 23-34.
Pattnayak, B. C., & Mohapatra, S. (2023). A smartphone-assisted ultrasensitive detection of acrylamide in thermally processed snacks using CQD@ Au NP integrated FRET sensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 286, 122009.
Ramezani, M., Danesh, N. M., Lavaee, P., Abnous, K., & Taghdisi, S. M. (2015). A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosensors and Bioelectronics, 70, 181-187.
Saeedian, M., Niazmand, R., Ajam, M. (2019). Chemical characteristics and the amount of acrylamide in burger: the effect of meat amount and powdered milk. Journal of food science and technology, ( Iran) 91 (16), 337-346.
Storhoff, J. J., Elghanian, R., Mucic, R. C., Mirkin, C. A., & Letsinger, R. L. (1998). One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc, 120(9), 1959-1964.
Tekkeli, S. E. K., Önal, C., & Önal, A. (2012). A review of current methods for the determination of acrylamide in food products. Food Analytical Methods, 5(1), 29-39.
Wang, Q., Ji, J., Jiang, D., Wang, Y., Zhang, Y., & Sun, X. (2014). An electrochemical sensor based on molecularly imprinted membranes on a P-ATP–AuNP modified electrode for the determination of acrylamide. Analytical Methods, 6(16), 6452-6458.
Xu, N., Ma, X., Cao, Y., Wang, H., Wu, H., Zheng, H., . . . Sun, C. (2023). A novel fluorescent structure-switching aptasensor for the sensitive detection of acrylamide based on AuNPs-assisted separation of ssDNA. Advanced Agrochem, 2(3), 276-283.
Yaylayan, V. A., Locas, C. P., Wnorowski, A., & O'Brien, J. (2004). The role of creatine in the generation of N-methylacrylamide: a new toxicant in cooked meat. Journal of Agricultural and Food Chemistry, 52(17), 5559-5565.