Abd El-Aziz, S. E. (2011). Control strategies of stored product pests. J. Entomol, 8(2), 101-122.
Adler, C., Athanassiou, C., Carvalho, M. O., Emekci, M., Gvozdenac, S., Hamel, D., ... & Trematerra, P. (2022). Changes in the distribution and pest risk of stored product insects in Europe due to global warming: Need for pan-European pest monitoring and improved food-safety. Journal of Stored Products Research, 97, 101977.
Ali, M. M., Hashim, N., Abd Aziz, S., & Lasekan, O. (2021). Quality inspection of food and agricultural products using artificial intelligence. Advances in Agricultural and Food Research Journal, 2(2).
Banga, K. S., Mohapatra, D., Babu, V. B., Giri, S. K., & Bargale, P. C. (2020). Assessment of bruchids density through bioacoustic detection and artificial neural network (ANN) in bulk stored chickpea and green gram. Journal of stored products research, 88, 101667.
Bianconi, A., Zuben, C.J.V., Serapião, A.B.D.S., Govone, J.S. (2010). Artificial neural networks: A novel approach to analysing the nutritional ecology of a blowfly species, Chrysomya megacephala. Journal of Insect Science, 10(1): 58.
Bell, C. H. (2014). A review of insect responses to variations encountered in the managed storage environment. Journal of stored products research, 59, 260-274.
Cox, P. D., & Collins, L. E. (2002). Factors affecting the behaviour of beetle pests in stored grain, with particular reference to the development of lures. Journal of Stored Products Research, 38(2), 95-115.
Da Silva, I.N., Hernane Spatti, D., Andrade Flauzino, R., Liboni, L.H.B., dos Reis Alves, S.F., da Silva, I.N., Hernane Spatti, D., Andrade Flauzino, R., Liboni, L.H.B., dos Reis Alves, S.F. (2017). Artificial neural network architectures and training processes (pp. 21-28). Springer International Publishing.
Elik, A., Yanik, D. K., Istanbullu, Y., Guzelsoy, N. A., Yavuz, A., & Gogus, F. (2019). Strategies to reduce post-harvest losses for fruits and vegetables. Strategies, 5(3), 29-39.
Günther, F., Fritsch, S. (2010). Neuralnet: training of neural networks. R J., 2(1):30.
Heeps, J. (2016). Insect management for food storage and processing. Elsevier. 231pp.
Kaur, M., & Kaur, J. (2022). Performance score to estimate agricultural market hygiene and infrastructure. Journal of Agriculture and Food Research, 9, 100332.
Loganathan, M., Akash, U., Durgalakshmi, R., & Anandharamakrishnan, C. (2018). Constraints in grain quality management: a warehouse journey. Julius-Kühn-Archiv, (463).
Lutz, É., & Coradi, P. C. (2022). Applications of new technologies for monitoring and predicting grains quality stored: Sensors, internet of things, and artificial intelligence. Measurement, 188, 110609.
Morrison III, W. R., Bruce, A., Wilkins, R. V., Albin, C. E., & Arthur, F. H. (2019). Sanitation improves stored product insect pest management. Insects, 10(3), 77.
Park, Y.S., Rabinovich, J., Lek, S. (2007). Sensitivity analysis and stability patterns of two-species pest models using artificial neural networks. Ecological modelling, 204(3-4): 427-438.
Querner, P. (2015). Insect pests and integrated pest management in museums, libraries and historic buildings. Insects, 6(2), 595-607.
Santiago, R. M. C., Rabano, S. L., Billones, R. K. D., Calilung, E. J., Sybingco, E., & Dadios, E. P. (2017, November). Insect detection and monitoring in stored grains using MFCCs and artificial neural network. In TENCON 2017-2017 IEEE Region 10 Conference (pp. 2542-2547). IEEE.
Singh, T., Bhat, M. M., & Khan, M. A. (2009). Insect adaptations to changing environments-temperature and humidity. International Journal of Industrial Entomology, 19(1), 155-164.
Sudhakar, N., Karthikeyan, G., RajhaViknesh, M., Saranya, A. S., & Shurya, R. (2020). Technological Advances in Agronomic Practices of Seed Processing, Storage, and Pest Management: An Update. Advances in Seed Production and Management, 359-398.
Tay, A., Lafont, F., Balmat, J.F. (2021). Forecasting pest risk level in roses greenhouse: Adaptive neuro-fuzzy inference system vs artificial neural networks. Information Processing in Agriculture, 8(3):386-397.
Ul Rahman, J., Makhdoom, F., Ali, A., Danish, S. (2023). Mathematical modeling and simulation of biophysics systems using neural network. International Journal of Modern Physics B, p.2450066.
Wang, J., Bu, Y. (2022). Internet of Things‐based smart insect monitoring system using a deep neural network. IET Networks, 11(6):245-256.
Xia, D., Chen, P., Wang, B., Zhang, J., Xie, C. )2018(. Insect detection and classification based on an improved convolutional neural network. Sensors, 18(12): 4169.
Zhang, W. and Zhang, X. )2008(. Neural network modeling of survival dynamics of holometabolous insects: A case study. Ecological Modelling, 211(3-4), pp.433-443.