- خداوردیلو، ح. و همایی، م. 1381. اشتقاق توابع انتقالی خاک به منظور براورد منحنی مشخصه رطوبتی. مجله تحقیقات مهندسی کشاورزی. 3(10):46-35
- رضایی، ع. و نیشابوری، م. ر. 1378. تعیین منحنی مشخصه آب خاک با استفاده از منحنی توزیع اندازه ذرات و جرم مخصوص ظاهری خاک. ششمین کنگره علوم خاک ایران. مشهد. ص307-306.
- شیرین فکر ، ا. 1388. استفاده از مدلهای همدمای جذب سطحی فسفر وارتباط آن با خاکهای اسیدی باغهای چای.گزارش نهایی. مرکز اطلاعات و مدارک علمی سازمان تحقیقات،آموزش و ترویج کشاورزی.ص:1-52
- محمدی ج.، 1382. پدومتری-جلد اول: آمار کلاسیک. 531 صفحه.
- محمدی ج.، و رئیسی گهرویی، ف. 1382. توصیف فراکتالی اثرات قرق دراز مدت و چرای مفرط بر الگوی تغییرات مکانی شماری از ویژگی های شیمیائی خاک. علوم و فنون کشاورزی و منابع طبیعی، 4: 25-37.
- Anderson, A. N., McBratney, A. B. and FitzPatrick, E. A., 1996. Soil mass, surface, and spectral fractal dimensions estimated from thin section photographs. Soil Sci. Soc. Am. J. 60: 962-969.
- Anderson, A. N., McBratney, A. B and Crawford, W. J., 1998. Application of fractals to soil studies. Adv. Agron. 63:1-76.
- Arya, L. M. and Paris, J. F, 1981.A physicoemprical model to predict the soil moisture characteristic from particle size distribution and bulk density data.Soil. Sci. Soc. Am. J. 45: 1023-1030.
- Arya, L.M., Leij, F.J., Van Genuchten, M.Th. and Shouse, P.J. 1999a. Scaling parameter to predict the soil water characteristic from particle size distribution. Soil Sci. Soc. Am. J. 63: 510-519.
- Arya, L.M., Leij, F.J., Van Genuchten, M.Th. and Shouse, P.J. Relation between hydraulic conductivity function and the particle- size distribution. Soil Sci. Soc. Am. J. 63: 1063-1070.
- Bavaye, P., Parlang, J.Y. and Stewart, B.A. 1998. Fractal in soil science.Advances in soil science.CRC Press, Boc Raton, FL.
- Bayat, H., Neyshbouri, M. R., Mahboubi, A. A., Mosadeghi, M.R. (2008) “Perediction of penetration resistance using artificial neural network and comparison with linear and nonlinear regression model”.Turkish journal Agriculture and Forestry. 32, 425-433.
- Bird, N.R.A., Bartoli, F. and Dexter, A.R. 1996. Water retention models for fractal soil structures. Eur. J. Soil Sci. 47: 1-6.
- Brooks, R.H. and Corey, A. T. 1964. Hydraulic properties of porous media. Hydrology Paper no. 3. Colorado State Univ, fort Collins, Co. USA.
- Crawford, J. W., Sleeman, B.D. and Young, I.M. 1993. On the relation between number size distribution and fractal dimension of aggregates. J. Soil Sci. 44:555-565.
- Crawford, J. W., Matsui, N. and Young, I.M. 1995. The relation between the moisture release curve and the structure of soil. Eur. J. Soil Sci. 46: 369-375.
- Dowd, P.A. and Sarac, c. 1994.A neural network approach to geostatistical simulation, Mathematical geology.26 (4):493-503.
- Fooladmand, H.R., and Hadipour, S. 2011. Parametric pedotransfer functions of a simple linear scale model for soil moisture retention curve. African Journal of Agricultural Research. 6(17): 4000-4004.
- Fredlund, M.D., Fredlaund, D.G., Ward Wilson, G. 2000. An equation to represent grain-size distribution.Can.Geotech. J. 37: 817-827.
- Gardner W. 1956. Mathematics of isothermal water conduction in unsaturated soils. Highway Research Board Special Report 40 International Symposuim on Physico Chemical Phenomenon in Soils. Washington DC. 78-87.
- Groenevelt, P.H., Grant, C.D., 2004. A new model for the soil water retention curve that solves the problem of residual water contents. J. Soil Sci.55: 479-485.
- Gee, G.W., and Or, D. 2002. Particle-size Anallysis In: Warren, A.D. (ed) Methods os soil analysis. Part 4.Physical Methods. Soil Sci. Soc. Am. J. pp: 255-295.
- Grossman, R.B. and Reinsch, T.G. 2002. Bulk density and linear extensibility. In: Warren, A.D. (ed) Methods of soil analysis. Part 4.Physical Methods Soil Sci. Soc. Am. J. 201-228.
- Guber, A.K., Rawls, W.J., Shein, E.V. and Pachepsky, Y.A. 2003. Effect of soil aggregate size distribution on water retention. Soil Sci. 168: 223-233.
- Gupta, S.C and Larson, W.E. 1979a. Estimating soil water retension characteristic from particle size distribution, organic matter percent, and bulk density. Water Resour. Res. 15:1633-1635.
- Havercamp, R. and Parlang, J.Y. 1986. Prediction retention curve from particle size distribution, I. Sandy soils without organic matter. Soil Sci. 142:325-339.
- Hillel, D. 1998. Environmental soil physics.Academic Press, pp.771.
- Haung, G.H. and Zhang, R. 2005. Evauation of soil water retension curve with the pore-solid fractal model. Geoderma.127:52-61.
- Hunt, A.G. and Gee, G.W. 2002. Water retention of fractal soil models using continuum percolation theory: test of handford site soils. Vadose Zone J. 1:252-260.
- Hwang, S.I. and Powers, S.E. 2003. Using particle-size distribution models to estimate soil hydraulic properties. Soil Sci. Am. J. 67: 1103-1112.
- Khlosi, M., Cornelis, W. M., Douak, S., Van Genuchten, M, T., and Gabriel, D. 2008. Performance evaluation of models that describe the soil water retention curve between saturation and oven dryness. Vadose Zone Journal. 7: 87-96.
- Koekkoek, E. J. W. and Booltink, H. 1999. Neural network models to predict soil-water retention. Eur. J. Soil Sci. 50489-496.
- Millan, H. and Orellana, R. 2001. Mass fractal dimensions of soil aggregates from different depths of a compacted vertisol. Geoderma 101: 65-76.
- Minasny, B. and McBratney, A.B. 2002. The Neuro-m method for fitting neural network parametric pedotransfer functions. Soil Sci. Soc. Am. J. 66: 352-361.
- Pachepsky, Y., Rawls, W., Gimenez, and Watt, J.P.C. 1998. Use of soil penetrationresistance and group method of data handling to improve soil water retention estimates. Soil and Tillage Res. 49: 117-126.
- Pachepsky, Y. and rawls, W. 1999. Accuracy and redliability of pedotransfer functions as a affected by grouping soils. Soil Sci. Soc. Am. J. 63:1748-1757.
- Perrier, E., Bird, N., 2002. Modelling soil fragmentation: the PSFapproch. Soil Tillage Res. 64: 91-99.
- Perrier, E., Bird, N., 2003. The PSF model of soil structure: a multiscale approach. In: Pachepsky, Ya., Radcliff, D.E., Selim, H.M. (Eds), scaling methods in soil physics. CRC Press, Boca Raton, FL, pp. 1-18.
- Quinn, G. P. & Keough, M. J. 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge, UK.
- Rawls, W. J., Brakensiek, D.L., 1985. Prediction of soil water properties for hydrologic modeling In: jones, E., Ward, T. J. (Eds).Watershed Manag. Eighties. Proceedig os Symposium ASCE, Denver, CO, 30April-2 May 1985 ASCE, New York, pp. 293-299
- Riue, M. and Sposito, G. 1991. Fractal fragmentation, soil porosity and soil water properties. I. Theor. Soil Sci. Soc. Am. J. 55: 1231-1238.
- Schaap, M.G. and Bouten, W. 1996. Modeling water retention curves of sandy soils using neural networks. Water Resour. Res. 32: 3033-3040.
- Schaap, M.G., leij, F.J. and Van genuchten, M.Th. 1998.Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Sci. Soc. Am. J. 62: 847-855.
- Scheinost, A.C., Sinowsi, W. and Auerswald, K. 1997. Regionalization of soil water retention curves in highly variable soilscape, I. Developing a new pedotransfer function. Geoderma 78: 129 – 143.
- Schuh, W.M., Cline, R.L. and Sweney, M.D. 1988. Comparison of laboratory procedure and a textural model for predicting in situ soil water retention. Soil Sci. Soc. Am. J. 52: 1218-1227.
- Sepaskhah, A.R., Tafteh, A. 2011. Pedotransfer function for estimation of soil specific surface area using soil fractal dimention of improved particle size distribution. Agronomy and Soil Science journal.pp: 1-11
- Tietje, O. and Tapkenhinrichs, M. 1993. Evalution of pedo-transfer function. Soil Sci. Soc. Am. J. 57: 1088-1095.
- Tomasella, J., Pachepsky, Y., Crestana, S. and Rawls, W.J. 2003. Comparison of two technigues to develop pedotransfer functions for water retention. 67: 1085-1092.
- Tyler, S.W. and Wheatcraft, S.W. 1990. Fractal Process in soil water retention. Water Resour. Res. 26:1047-1054.
- Tyler, S.W. and Wheatcraft, S.W. 1992. Fractal Scaling of soil particle-size distribution: analysis and limitation. Soil Sci. Soc.Am. J.56:362-369.
- Ungaro, F., Calzolari, C. and Busano, E. 2005. Development of pedotransfer functions using a group method of data handeling for the soil of the PianuraPadano-Veneta region of north Italy: Water retention properties. Geoderma. 124:293-317.
- Van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44:892-898.
- Vereecken, H., Maes, J., Feyen, J. and Darius, P. Estimating the soil moisture retention characteristics from texture, bulk density and carbon content. Soil Sci. 148:389–403.
- Vereecken, H., Dielst, J., Van Orahoven, J., Feyen, J. and Bouma, J. 1992. Functional evalution of pedotransfer for the estimation of soil hydraulic properties.Soil Sci. Soc. Am. J. 56: 1371-1378.
- Walczak, R., Witkowska-Walczak, B. and Stawinski, C. 2004.Pedotransfer studies in Poland. In Y. Pachepsky, and W. J. Rawls (Eds). Development of pedotransfer functions in soil hyrology. Elsevier, Boston, Heidelberg, London, pp. 449-462.
- Walczak, R.T., Moreno, F., Stawinski, C., Fernande, E. and Arrue, J. L. 2006.Modeling of soil water retention curve using soil solid phase parameters. J. Hydrol. 329: 527-533.
- Wösten, J.H.M., Pachepsky, Y. and Rawls, W.J. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 251: 123-150.
- Xu, Y.F. and Ping Dong. 2004. Fractal approach to hydraulic properties in unsaturated porous media. Chaos, Solitions and Fractals. 19: 327-337.
- Young, I.M. and Crawford, J.W. 1991. The fractal structure of soil aggregates: its measurement and interpretation. Soil Sci. 42:187-192.
- Young, I.M. and Crawford, J.W. and rappoldt, C. 2001.New method and models for characterizing structural heterogeneity of soil. Soil and Tillage Res. 61: 33-45.
- Zuur, A. F., Ieno, E. N. & Smith, G. M. 2007. Analysing ecological data. Springer, New York.
|