- Abdel-Aziz, M.S., Shaheen, M.S., El-Nekeety, A.A. and Abdel-Wahhab, M.A., 2014. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. Journal of Saudi Chemical Society, 18: 356-363.
- Afshar, P. and Sedaghat, S., 2016. Bio-Synthesis of silver nanoparticles using water extract of Satureja hortensis L. and evaluation of the antibacterial properties. Current Nanoscience, 12: 90-93.
- Ajitha, B., Reddy, Y.A.K. and Reddy, P.S., 2014. Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectrochimica Acta, 121: 164-172.
- Arumugam, N., Thulasinathan, B., Pasubathi, R., Thangavel, K., Muthuramalingam, J.B. and Arunachalam., A., 2017. Biogenesis of silver nanoparticles using selected plant leaf extract; characterization and comparative analysis of their antimicrobial activity. Nanomedicine Journal, 4: 208-217.
- Asharani, P., Handi, M.P. and Valiyaveettil, S., 2009. Anti-proliliferative activity of silver nanoparticles. BMC Molecular and Cell Biology, 10: 1-14.
- Azza, A., El-Din, E., Eman, E., Azziz, S.F., Hendawy, A. and Omer, EA., 2009. Response of Thymus vulgaris L. to salt stress and alar (B9) in newly reclaimed soil. Journal of Applied Sciences Research, 5: 2165-2170.
- Biener, J., Wittstock, A., Baumann, T.F., Welssmuller, J., Baumer, M. and Hamza, A.V., 2009. Surface chemistry in nanoscale materials. Materials, 2: 2404-2428.
- Boisselier, E. and Astruc, D., 2009. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chemical Society Reviews, 38: 1759-1782.
- Behera, S., Ojha, A., Rout, J. and Nayak, P., 2012. Plant mediated synthesis of silver nanoparticles: Opportunity and challenge. International Journal of Biology Pharmacy and Allied Sciences, 1:
1637-1658.
- Boogar, R., 2014. Antibacterial effects of silver nanoparticles produced by Satureja hortensis extract on isolated Bacillus cereus from soil of sistan plain. International Journal of Infections Diseases, 1: 1-1.
- Chang, T.Y., Chen, C.C., Cheng, K.M., Chin, C.Y., Chen, Y.H., Chen, X.A., Sun, J.R., Young, J.J. and Chiueh, T.T., 2017. Trimethyl chitosan-capped silver nanoparticles with positive surface charge: Their catalytic activity and antibacterial spectrum including multidrug-resistant strains of Acinetobacter baumannii. Colloid Surface, 155: 61-70.
- Das, M. and Smita, S.S., 2018. Biosynthesis of silver nanoparticles using bark extracts of Butea monosperma (Lam.) Taub. and study of their antimicrobial activity. Applied Nanoscience, 8: 1059-1067.
- Fathiazad, F. and Hamedeyazdan S., 2011. A review on Hyssopus officinalis L.: Composition and biological activities. African Journal of Pharmacy and Pharmacology, 5: 1959-1966.
- Gilaki, M., 2010. Biosynthesis of silver nanoparticles using plant extracts. International Journal of Biological Sciences, 10: 465-467.
- Gnanadesigan, M., Anand, M., Ravikumar, S., Maruthupandy, M., Vijayakumar, V., Selvam, S., Dhineshkumar, M. and Kumaraguru, A., 2011. Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pacific Journal of Tropical Medicine, 4: 799-803.
- Govindaraju, K., Tamilselvan, S., Kiruthing, V. and Singaravelu, G., 2010. Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. Journal of Biopesticides, 3: 394-399.
- Hajipour, M.J., Fromm, K.M., Ashkarran, A.A., Aberasturi, D.J., Larramendi, I.R., Rojo. T., Serpooshan, V., Parak, W.J. and Mahmoudi, M., 2012. Antibacterial properties of nanoparticles. Trends in Biotechnology, 30: 499-511.
- Hoang, T.M., Moghaddam, L., Williams, B., Khanna, H., Dale, J. and Mundree, S.G., 2015. Development of salinity tolerance in rice by constitutive overexpression of genes involved in the regulation of programmed cell death. Frontiers in Plant Science, 6: 1-14.
- Karray-Bouraoui, N., Rabhi, M., Neffati, M., Baldan, B., Ranieri, A., Marzouk, B., Lachaâl, M. and Smaoui, A., 2009. Salt effect on yield and composition of shoot essential oil and trichome morphology and density on leaves of Mentha pulegium. Industrial Crops and Products, 30: 338-343.
- Kazazi, H., Rezaei, K., Ghotb-Sharif, S.J., Emam-Djomeh, Z. and Yamini, Y., 2007. Supercritical fluid extraction of flavors and fragrances from Hyssopous officinalis L. cultivated in Iran. Food Chemistry, 105: 805-811.
- Kedziora, A., Speruda, M., Krzyzewska, E., Rybka, J., Lukowiak, A. and Bugla-Ptoskonska, G., 2018. Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. International Journal of Molecular Sciences, 19: 1-17.
- Khandekar, S.V., Kulkharni, M. and Devarajan, P.V., 2014. Polyaspartic acid functionalized gold nanoparticles for tumor targeted doxorubicin delivery. Journal of Biomedical Nanotechnology, 10: 143-153.
- Kizil, S., Hasimi, N., Tolan, V. and Karatas, H., 2010. Chemical composition, antimicrobial and antioxidant activities of hyssop (Hyssopus officinalis L.) essential oil. Notulae Botanicae Hori Agrobotanici Cluj-Napoca, 38: 99-103.
- Lidon, F.C. and Teixerira, M.G., 2000. Rice tolerance to excess Mn: implication in the chloroplast lamella synthesis of a novel Mn protein. Plant Physiology and Biochemistry, 38: 969-978.
- Malinsky, M.D., Kelly, K.L., Schatz, G.C. and Van Duyne, R.P., 2001. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. Journal of the American Chemical Society, 123: 1471-1482.
- Maliszewska, I. and Sadowski, Z., 2009. Synthesis and antibacterial activity of silver nanoparticles, Journal of Physics: Conference Series, 146: 1-6.
- Nahar, K., Aziz, S., Bashar, M.S., Haque, M.D.A. and Al-Reza, S.M.D., 2020. Synthesis and characterization of Silver nanoparticles from Cinnamomum tamala leaf extract and its antibacterial potential. International Journal of Nano Dimension, 11: 88-98.
- Negrao, S., Schmockel, S.M. and Tester, M., 2017. Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119: 1-11.
- Oliveira, H., Barros, A.S., Delgadillo, I., Coimbra, M.A. and Santos, C., 2009. Effects of fungus inoculation and salt stress on physiology and biochemistry of in vitro grapevines: emphasis on sugar composition changes by FT-IR analysis. Environmental and Experimental Botany, 65: 1-10.
- Oves, M., Aslam, M., Rauf, M.A., Qayyum, S., Qari, H.A., Khan, M.S., Alam, M.Z., Tabrez, S., Pugazhendhi, A. and Ismail, I.M., 2018. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Materials Science and Engineering: C, 89: 429-443.
- Pavia, D.L., Lampman, G.M., Kriz, G.S. and Vyvyan, J.A., 2008. Introduction to Spectroscopy. Cengage Learning, 752p.
- Pirtarighat, S., Ghannadnia, M. and Baghshahi, S., 2017. Antimicrobial effects of green synthesized silver nanoparticles using Melissa officinalis grown under in vitro condition. Nanomedicine, 4: 184-190.
- Pirtarighat, S., Ghannadnia, M. and Baghshahi, S., 2019. Biosynthesis of silver nanoparticles using Ocimum basilicum cultured under controlled condition for bactericidal application. Materials Science and Engineering C, 98: 250-255.
- Pugazhendhi, A., Edison, T.N.J.I., Karuppusamy, I. and Kathirvel, B., 2018. Inorganic nanoparticles: a potential cancer therapy for human welfare. International Journal of Pharmaceutics, 539: 104-111.
- Ramakrishna, A. and Ravishankar, G.A., 2011. Influence of abiotic stress signals on secondary metabolites in plants. Journal of Plant Signaling and Behavior, 6: 1720-1731.
- Rai, M.K., Deshmukh, S.D., Ingle A.P. and Gade, A.K., 2012. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. Applied Microbiology, 112: 841-852.
- Rajesh, W.R., Jaya, R.L., Niranjan, S.K., Vijay, D.M. and Sahebrao, B.K., 2009. Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.). Current Nanoscience, 5: 117-122.
- Rakholiya, K. and Chanda, S., 2012. In vitro interaction of certain antimicrobial agents in combination with plant extracts against some pathogenic bacterial strains. Asian Pacific Journal of Tropical Biomedicine, 2: 876-880.
- Rasaee, I., Ghannadnia, M. and Baghshahi, S., 2018. Biosynthesis of silver nanoparticles using leaf extract of Satureja hortensis treated with NaCl and its antibacterial properties. Microporous and Mesoporous Materials, 264: 240-247.
- Ravikumar, S., Gnanadesigan, M., Suganthi, P. and Ramalakshmi, A., 2010. Antibacterial potential of chosen mangrove plants against isolated urinary tract infectious bacterial pathogens. International Journal of Medical Sciences, 2: 94-99.
- Roopan, S.M., Madhumitha, G., Rahuman, A.A., Kamaraj, C., Bharathi, A. and Surendra, T., 2013. Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Industrial Crops and Products, 43: 631-635.
- Sanchez-Lopez, L., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A.L., Galindo, R., Cano, A., Espina, M., Ettecheto, M., Camins, A., Silva, A.M., Durazzo, A., Santini, A., Garcia, M.L. and Souto, E.B., 2020. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials, 10: 1-39.
- Smith, A., Johnson, H. and Hall, M., 2003. Metabolic fingerprinting of salt-stressed tomatoes. Bulgarian Journal of Plant Physiology, 1: 153-163.
- Sre, P.R., Reka, M., Poovazhagi, R., Kumar, M.A. and Murugesan, K., 2015. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica Lam. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135: 1137-1144.
- Stehfest, K., Boese, M., Kerns, G., Piry, A. and Wilhelm, C., 2004. Fourier transform infrared spectroscopy as a new tool to determine rosmarinic acid in situ. Journal of Plant Physiology, 161: 151-165.
- Stehfest, K., Toepel, J. and Wilhelm, C., 2005. The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiology and Biochemistry, 43: 717-726.
- Taarit, M.B., Msaada, K., Hosni, K. and Marzouk, B., 2010. Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress. Food Chemistry, 119: 951-956.
- Tahir, M., Khushtar, M., Fahad, M. and Rahman, M.D.A., 2018. Phytochemistry and pharmacological profile of traditionally used medicinal plant Hyssop (Hyssopus officinalis L.). Journal of Applied Pharmaceutical Science, 8: 132-140.
- Umashankari, J., Inbakandan, D., Ajithkumar, T.T. and Balasubramanian, T., 2012. Mangrove plant, Rhizophora mucronata L. mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pthogens. Aquatic Biosynthesis, 8: 1-8.
- Vanaja, M., Gnanajobitha, G., Paulkumar, K., Rajeshkumar, S., Malarkodi, C. and Annadurai, G., 2013. Phytosynthesis of silver nanoparticles by Cissus quadrangularis: Influence of physicochemical factors. Nanostructure in Chemistry, 3: 1-8.
- Zargar, M., Hamid, A.A., Bakar, F.A., Shamsudin, M.N., Shameli, K., Jahanshiri, F. and Farahani F., 2011. Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules, 16: 6667-6676.
- Zheljazkov, V.D., Astatkie, T. and Histov, A.N., 2012. Lavender and hyssop productivity, oil content, and bioactivity as a function of harvest time and drying. Industrial Crops and Products, 36: 222-228.