- Alizamir, M. and S. Sobhanardakani. 2018. An Artificial Neural Network-Particle Swarm Optimization (ANN-PSO) approach to predict heavy metals contamination in groundwater resources. Jundishapur Journal of Health Sciences, 10(2): doi: 10.5812/jjhs.67544.
- Altunkaynak, A. 2009. Sediment load prediction by genetic algorithms. Advances in Engineering Software, 40: 928-934.
- Cheng, C.T., C.P. Ou and K.W. Chau. 2002. Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall–runoff model calibration. Journal of Hydrology, 268: 72-86.
- Criss, R.E. and W.E. Winston. 2008. Do Nash values have value? discussion and alternate proposals. Hydrological Processes, 22(14): 2723-2738.
- Ebtehaj, I. and H. Bonakdari. 2016. Assessment of evolutionary algorithms in predicting non-deposition sediment transport. Urban Water Journal, 13: 499-510.
- Guo, W. and H. Wang. 2010. August PSO optimizing neural network for the Yangtze River sediment entering estuary prediction. In 2010 6th International Conference on Natural Computation, 4: 1769-1772.
- Gupta, H.V., S. Sorooshian and P.O. Yapo. 1999. Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. Journal of Hydrologic Engineering, 4(2): 135–143.
- Gupta, H.V., H. Kling, K.K. Yilmaz and G.F. Martineza. 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modeling. Journal of Hydrology (Amsterdam), 377(1–2): 80–91.
- Hejazi, M.I., X. Cai and D.K. Borah. 2008. Calibrating a watershed simulation model involving human interference: an application of multi-objective genetic algorithms. Journal of Hydroinformatics, 10: 97-111.
- Hornik, K., M. Stinchcombe and H. White. 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5): 359-366.
- Jansson, M.B. 1996. Estimating a sediment rating curve of the Reventazon River at Palomo using logged mean loads within discharge classes. Journal of Hydrology, 183(3-4): 227-241.
- Kashefei Kavyani, A., S.A. Pourmosavi Kani and A. Jahanbani Adrakani. 2007. The training of multi-layer neural networks using PSO algorithm. First Joint Congress of Fuzzy Systems and Intelligent System, Mashhad, Ferdowsi University of Mashhad. Available online at:https://www.civilica.com/ Paper-FJCFIS01-FJCFIS01_229.html.
- Kaufman, L. and P.J. Rousseeuw. 2009. Finding groups in data: an introduction to cluster analysis (Vol. 344). John Wiley and Sons, New Jersey, USA, 342 pages.
- Kisi, O. and J. Shiri. 2012. River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques. Computers and Geosciences, 43: 73-82.
- Kisi, O., A. Keshavarzi, J. Shiri, M. Zounemat-Kermani and E.S.E. Omran. 2017. Groundwater quality modeling using neuro-particle swarm optimization and neuro-differential evolution techniques. Hydrology Research, 48(2017): 1508-1519.
- Kisi, O. and C. Ozkan. 2017. A new approach for modeling sediment-discharge relationship: local weighted linear regression. Water Resources Management, 30(2): 1-23.
- Krause, P., D.P. Boyle and F. Bäse. 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5: 89-97.
- Kuok, K.K., S. Harun and S.M. Shamsuddin. 2010. Particle swarm optimization feedforward neural network for modeling runoff. International Journal of Environmental Science and Technology, 7: 67-78.
- Lafdani, E.K., A.M. Nia and A. Ahmadi. 2013. Daily suspended sediment load prediction using artificial neural networks and support vector machines. Journal of Hydrology, 478: 50-62.
- Legates, D.R. and G.J. McCabe. 1999. Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1): 233-241.
- May, R.J., H.R. Maier and G.C. Dandy. 2010. Data splitting for artificial neural networks using SOM-based stratified sampling. Neural Networks, 23: 283-294.
- Mansourfar, K. 2009. Advanced statistical methods using applied software. University of Tehran Press, Tehran, Iran, 480 pages (in Persian).
- Moriasi, D.N. and J.G. Arnold, M.W. Liew Van, R.L. Bingner, R.D. Harmel and T.L. Veith. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3): 885-900.
- Muleta, M.K. 2011. Model performance sensitivity to objective function during automated calibrations. Journal of Hydrologic Engineering, 17(6): 756-767.
- Nash, J.E. and J.V. Sutcliffe. 1970. River flow forecasting through conceptual models, part I-A discussion of principles. Journal of Hydrology, 10(3): 282-290.
- Nasserabadi, F., A. Esmaali Ouri and S. Tolabi. 2013. Estimation of soil erosion potential and sediment yield using EPM model and GIS technique, case study: Balkhlochai River Basin. The First National Conference on Planning, Conservation and Sustainable Development, Hamedan, Hegmatane Environment Evaluators Association, available online at: https://www.civilica.com/ Paper-PCEPSD01-PCEPSD01_157.html.
- Partal, T. and H.K. Cigizoglu. 2008. Estimation and forecasting of daily suspended sediment data using wavelet–neural networks. Journal of Hydrology, 358(3-4): 317-331.
- Shahriar Shahhoseini, H., M. Moosavi and M. Mollajafari. 2011. Evolutionary algorithms- fundamentals, applications, implementation. Tehran Press Center, Iran University of Science and Technology, Tehran, 590 pages (in Persian).
- Swain, R. and B. Sahoo. 2017. Mapping of heavy metal pollution in river water at daily time-scale using spatio-temporal fusion of MODIS-aqua and Landsat satellite imageries. Journal of Environmental Management, 192: 1-14.
- Tabatabaei, M. and A. Salehpour Jam. 2017. Optimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network. Caspian Journal of Environmental Sciences, 15(4): 387-401.
- Tabatabaei, M., A. Salehpour Jam and S.A. Hosseini. 2019. Suspended sediment load prediction using non-dominated sorting genetic algorithm II. International Soil and Water Conservation Research, 7(2): 119-129.
- Tayfur, G. 2012. Soft computing in water resources engineering: artificial neural networks, fuzzy logic and genetic algorithms. WIT Press, Dorset, UK, 288 pages.
- Tfwala, S.S. and Y.M. Wang. 2016. Estimating sediment discharge using sediment rating curves and artificial neural networks in the Shiwen River, Taiwan. Water, 8(53): 1-15.
- Ulke, A., G. Tayfur and S. Ozkul. 2009. Predicting suspended sediment loads and missing data for Gediz River, Turkey. Journal of Hydrologic Engineering, 14: 954-965.
- Yar Kiani, A. 2009. Intelligent systems. Press Center of Poyesh Andisheh, Tehran, Iran, 260 pages (in Persian).
- Zhou, H. and G. Schaefer. 2009. An overview of fuzzy C-Means based image clustering algorithms. Foundations of Computational Intelligence, 2: 295-310.
- Zounemat-Kermani, M. 2017. Assessment of several nonlinear methods in forecasting suspended sediment concentration in streams. Hydrology Research, 48(5): 1240-1252.
|