Abouelatta, O. B. 2013. Classification of copper alloys microstructure using image processing and neural network. J. Am. Sci. 9, 213-222.
Ahmed, F., Al-Mamun, H. A., Bari, A. S. M. H., Hossain, E. and Kwan, P. 2012. Classification of crops and weeds from digital images: A support vector machine approach. Crop Prot. 40, 98-104.
Arribas, J. I., Sánchez-Ferrero, G. V., Ruiz-Ruiz, G. and Gómez-Gil, J. 2011. Leaf classification in sunflower crops by computer vision and neural networks. Comput. Electron. Agric. 78, 9-18.
Gebejes, A. and Huertas, R. 2013. Texture characterization based on grey-level co-occurrence matrix. The 2nd International Conference on Informatics and Management Sciences. March 25-29, Žilina, Slovakia.
Gonzalez, R. C., Woods, R. E. and Eddins, S. L. 2004. Digital Image Processing Using MATLAB. Prentice Hall.
Ma, Q., Zhu, D., Liu, J., Xiong, W. and Chen, H. 2013. Intra-row weed detection method in field based on texture and color feature. Adv. Inform. Sci. Ser. Sci. 5(8): 806-812.
Marques, O, 2011. Practical Image and Video Processing Using Matlab. Hoboken, New Jersey: John Wiley & Sons, Inc.
Naeem, A. M., Ahmad, I. and Islam, M. 2007. Weed classification using two dimensional weed
coverage Rate (2D-WCR) for real-time selective herbicide applications. World Acad. Sci. Eng. Technol. 25, 335-339.
Persson, M. and Astrand, B. 2008. Classification of crops and weeds extracted by active shape models. Biosyst. Eng. 100, 484-497.
Shidnal, S. 2014. A texture feature extraction of crop field images using GLCM approach. Int. J. Sci. Eng. Adv. 2, 1006-1011.
Simon, D. 2008. Biogeography-based optimization. IEEE Trans. Evol. Comput. 12, 702-713.
Wisaeng, K. 2013. A comparison of decision tree algorithms for UCI repository classification. Int. J. Eng. Trends Technol. 4, 3393-3397.
Wong, W. K., Chekima, A., Mariappan, M., Khoo, B. and Nadarajan, M. 2014. Genetic algorithm tuned SVM classifier for weed species recognition. Int. J. Comput. Sci. Trends Technol. 2, 24-30.
Wu, L. and Wen, Y. 2009. Weed/corn seedling recognition by support vector machine using texture features. Af. J. Agric. Res. 4, 840-846.