بحث
مقایسه مقادیر رس قابل انتشار در هر دو جنگلکاری نشان داد که تفاوت این ویژگی در عمق صفر تا 15 سانتیمتر در سطح 1 درصد معنیدار است. بالا بودن مقدار رس قابل انتشار در جنگلکاری توسکا را میتوان در نتیجهی آنیونهای آلی دانست که با افزایش بار منفی ذرات رس و همچنین با کمپلکس کردن کاتیون کلسیم و دیگر کاتیونهای چند ظرفیتی مانند آلومینیوم و در نتیجه کاهش دادن فعالیت آنها در محلول خاک، انتشار رسها را افزایش میدهند (Nelson & Oades, 1999).
تأثیر کاتیونهای کلسیم بهدلیل ظرفیت بالا و شعاع آبپوشی کم، عامل مهمی در افزایش هماوری خاکدانهها است (Toby O’geen et al., 2007 Lal & Shukla, 2004; Wong et al., 2005 ;). بالاتر بودن مقدار میانگین وزنی قطر خاکدانهها در جنگلکاری توسکا نسبت به جنگلکاری صنوبر ارتباط مستقیمی با مقدار ماده آلی این نوع جنگلکاری دارد، بهطوریکه مشاهده میشود مقدار کربن آلی خاک در جنگلکاری توسکا 34/1 برابر بیشتر از جنگلکاری صنوبر است. (Chaney & Swift (1984 با بررسی میانگین وزنی قطر خاکدانهها در 26 نمونه خاک مشاهده کردند که بین این ویژگی و مقدار ماده آلی همبستگی خطی وجود دارد. بهطوریکه بالا بودن میانگین وزنی قطر خاکدانهها در جنگلکاری توسکا را میتوان به ماده آلی بیشتر در این جنگلکاری نسبت داد.
با افزایش مقدار بقایای گیاهی، مقدار مادهآلی خاک افزایش مییابد که در نتیجه قدرت نگهداری آب هم افزایش مییابد. مواد حاصل از تجزیه مواد آلی سبب چسبیدن ذرات به یکدیگر شده و خاکدانههای پایداری تشکیل میشود و به این ترتیب مقدار تخلخل درشت در خاک زیادتر شده و مقدار آب نگهداری شده در ظرفیت مزرعه افزایش مییابد. از آنجا که مقادیر ماده آلی اندازهگیری شده در جنگلکاری توسکا بیشتر از جنگلکاری صنوبر بود، بنابراین بالاتر بودن مقدار آب قابل استفاده در جنگلکاری توسکا را میتوان به مقدار ماده آلی بیشتر در این جنگلکاری نسبت داد. Makoi et al. (2007) با بررسی خاکهای شمال تانزانیا نشان دادند که هر چه مقدار رس و ماده آلی در خاک بیشتر شود ظرفیت نگهداری آب در خاک افزایش مییابد. ظرفیت تبادلی کاتیونی موادآلی بیشتر از ظرفیت تبادلی کانیهای رسی است، با افزودن ماده آلی به خاک بار منفی افزایش یافته که در نتیجه آن ظرفیت تبادل کاتیونی خاک و ظرفیت نگهداری آب در خاک افزایش مییابد. در عین حال تفاوت مواد آلی و رسها در این است که مواد آلی آب جذب شده را نسبت به رسها راحتتر در اختیار گیاه قرار میدهد.
نوع سیستم ریشه، مقدار و کیفیت مواد اضافه شده به خاک، فعالیتهای آنزیمی برون سلولی، کلاتهای آلی تولید شده در خاک و فعالیت موجودات زنده ازجمله عوامل مهمی هستند که بر مقدار پراکنش فسفر خاک تأثیر دارند (Xiongwen & Bai-Lian, 2003). بر اساس نیمرخ های حفر شده در هر یک از تودهها، به نظر میرسد در جنگلکاری توسکا بهدلیل حضور مقادیر فراوان ریشههای ریز و خیلی ریز در افقهای سطحی و نیز عدم توسعه و گسترش آنها در قسمتهای زیرین مقادیر فسفر در این جنگلکاری بهمراتب بیشتر از جنگلکاری صنوبر بوده است.
پایداری خاکدانههای خاک مرتبط با کربن آلی خاک و مقدار کربوهیدرات خاک است. پایداری خاکدانهها با گذشت زمان به دنبال تغییر کاربری، احتمالاً بهدلیل وجود مواد آلی تازه مثل کربوهیدراتها است (Spohn & Giani, 2011).Kiani et al. (2004) در بررسی کاربری اراضی بر روی خصوصیات خاک کیفی خاک در استان گلستان دریافتند که تنفس میکروبی خاک در اراضی جنگلی بیشتر از اراضی زراعی است.
کربوهیدرات عصارگیری شده با آب داغ بهعنوان یک شاخص ارزیابی کیفیت خاک در ارتباط با خاکدانه سازی خاک توسط سایر محققان نیز مورد استفاده قرار گرفته است (Yousefi et al., 2008). یکی از دلایل پایداری خاکدانهها حضور مواد آلی تازه نظیر کربوهیدراتها و کربن آلی است که این دو بهشکل سیگموئیدی با میانگین وزنی قطر خاکدانهها ارتباط دارند. برخی از محققان کاهش میانگین وزنی قطر خاکدانهها را بهعلت تخریب خاکدانههای بزرگتر عنوان کردهاند (Spohn & Gian, 2011). Onweremad et al. (2010) با بررسی ترسیب کربن در بین خاکدانهها با اندازه مختلف به این نتیجه رسیدند که مقادیر بالاتر ماده آلی در خاکدانههای بزرگتر دیده شد.
مقایسه جنگلکاری توسکا و صنوبر حکایت از آن داشت که جنگلکاری توسکا در لایه سطحی خاک کربن آلی بیشتری ذخیره میکند. از طرفی تأثیر جنگلکاری توسکا بر پایداری خاکدانهها، هدایت هیدرولیکی اشباع خاک، وزن مخصوص ظاهری و درصد کربن آلی خاک در مقایسه با جنگلکاری صنوبر بیشتر بود. بنابراین برای افزایش ترسیب کربن در خاک توصیه میشود که در مناطق مشابه با محل مطالعه از پوشش جنگلی توسکا استفاده شود. با توجه به اینکه توسکا از گیاهان تثبیت کننده نیتروژن نیز میباشد، این امر به افزایش ذخیره نیتروژن آلی در خاک هم منجر شده که میتواند به بهبود بیشتر شرایط توده بینجامد.
سپاسگزاری
از مدیران محترم دانشگاه زنجان بهدلیل حمایتهای مالی این تحقیق، تشکر و قدردانی میگردد.
منابع مورد استفاده
References
- Batjes, N.H., 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47: 151-163.
- Burt, R., 2004. Soil survey laboratory methods manual. Version 4.0. Soil Survey Investigation Report No 42, U.S. Government Print, 735 p.
- Chaney, K. and Swift R.S., 1984. The influence of organic matter on aggregate stability in some British soils. Soil Science, 35: 223-230.
- Chapman, S.J., Campbell, C.D. and Puri, G., 2003. Native woodland expansion: Soil chemical and microbiological indicators of change. Soil Biology and Biochemistry, 35: 753-764.
- Cheshire, M.V., 1979. Nature and origin of carbohydrates in soils. Academic Press, London, 216 p.
- Coyle, D.R., Coleman, M.D., Durant, J.A. and Newman, L.A., 2006. Survival and growth of 31 Populus clones in South Carolina. Biomass Bioenergy, 30: 750-758.
- Cui, X., Wang, Y., Niu, H., Wu, J., Wang, S., Schung, E., Rogasik, J., Fleckenstein, J. and Tang, Y., 2005. Effect of long-term grazing on soil organic carbon content in semiarid steppes in Inner Mongolia. Ecological Research, 20: 519-527.
- Doran, J.W. and Parkin, T.B., 1996. Quantative indicators of soil quality: a minimum data set. In: Doran, J.W. and Jones, A.J. (eds). Method for assessing soil quality. Soil Science Society of America, special publication, 49: 25-37.
- Fallahzade, J. and Hajabbasi, M.A., 2011. Soil organic matter status changes with cultivation of overgrazed pasture in semi-dry West Central Iran. Soil Science, 6: 114-123.
- Follett, R.F and Reed, D.A., 2010. Soil carbon sequestration in grazing lands: societal benefits and policy implications. Rangeland Ecology and Management, 63: 4-15.
- Ghani, A., Dexter, M. and Perrott, K.W., 2003. Hot- water extractable carbon in soils: a sensitive measurement for determining impacts of fertilization, grazing and cultivation. Soil Biology and Biochemistry, 35: 1231-1243.
- Gregorich, E.G., Beare, M.H., McKim, U.F. and Skjemstad, J.O., 2006. Chemical and biological characteristics of physically uncomplexed organic matter. Soil Science Society American Journal, 70: 975- 985.
- Guggenberger, G., Zech, W. and Thomas, R. L., 1995. Lignin and Carbohydrate alteration in particle- size separate of an Oxisol under tropical pasture following native savanna. Soil Biology and Biochemistry, 27: 1629-1636.
- Haynes, R.J. and Beare, M.H., 1997. Influence of six crop species on aggregate stability and some labile organic matter fractions. Soil Biochemistry, 29: 1647-1653.
- Haynes, R.J. Swift, R.S. and Stephen, R.C., 1991. Influence of mixed cropping rotation (pasture-arable) on organic matter content, stable aggregation and clod porosity in a group of soils. Soil and Tillage Research, 19: 77-87.
- Jolivet, C., Angers, D.A., Chantigny, M.H., Andreux, F. and Arrouays, D., 2006. Carbohydrate dynamics in particle-size fractions of sandy spodosols following forest conversion to maize cropping. Soil Biology and Biochemistry, 38: 2834-2842.
- Khormali, F. and Shamsi, S., 2009. Micromorphology and quality attribute of the loess derived soils affected by land use change: A case study in Ghapan watershed, northern Iran. Soil Science, 6: 197-204.
- Kiani, F., Jalalian, A., Pashaee, A. and Khademi, H., 2004. Effect of deforestation on selected soil quality attributes in loess-derived land forms of Golestan Province, northern Iran. Proceedings of the Fourth International Iran & Russia Conference: 546-550.
- Lal, R., Kimble, J.M., Follet, R.F. and Cole, V.R., 1998. The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect. Sleeping Bear Press, Chelsea, MI, USA, 128 p.
- Lal, R., 2004a. Soil carbon sequestration impacts on global climate change and food security. Science, 304: 1623-1626.
- Lal, R., 2004b. Soil carbon sequestration to mitigate climate change. Geoderma, 123: 1-22.
- Lal, R. and Shukla, M.K., 2004. Principles of Soil Physics. Marcel Dekker, New York, 716 p.
- Lal, R., 2005. Forest soils and carbon sequestration. Forest Ecology and Management, 220: 242- 258.
- Lobowski, R.N., Plantinga, A.J. and Stavins. R.N., 2005. Land use change and carbon sinks: Econometric, estimation of the carbon sequestration supply function. Resource for the Future, Washington, D.C., 51: 135-152.
- Lorenz, K., Lal, R. and Shipitalo, M.J., 2008. Chemical stabilization of organic carbon pools in particle size fractions in no-till and meadow soils. Biology and Fertility of Soils, 44: 1043-1051.
- Majaliwa, J.G., Twongyirwe, R., Nyenje, R., Oluka, M., Ongom, B., Sirike, J., Mfitumukiza, D.E., Azanga, R., Natumanya, R., Mwerera, M. and Barasa, B., 2010. The effect of land cover change on soil properties around Kibale National Park in southwestern Uganda. Applied and Environmental Soil Science, 10: 1-7.
- Makoi, J.H.J.R. and Ndakidemi, P.A., 2007. Reclamation of sodic soils in northern Tanzania, using locally available organic and inorganic resources. African Journal of Biotechnology, 6: 1926 -1931.
- Nael, M., Khademi, H. and Hajabbasi, M.A., 2004. Response of soil quality indicators and their spatial variability to land degradation in central Iran. Apply Soil Ecology, 27: 221- 231.
- Nelson, P.N. and Oades, J.M., 1999. Decomposition of 14C labeled plant material in a salt affected soil. Soil Biology and Biochemistry, 28: 433-441.
- Onweremadu, E., Osuji, G., Eshett, T., Unamba-Oparah, I. and Onwuliri, C., 2010. Soil carbon sequestration in aggregate size of a forested isohyperthermic Arenic Kandiudults. Agriculture Science, 43: 9-15.
- Page, A.L., Miller, R.H. and Keeney, D.R., 1986. Methods of soil analysis. Part 2 - Chemical and Microbiological Properties, 2nd Edition. Agronomy Society of America. Monogr. 9. ASA and SSSA, Madison, WI. 1159.
- Pankhurst, C.E., Hawke, B.G., Mcdonald, H.J., Kirby, C.A., Buckerfield, J.C., Michelsen, P., Obrien, K.A., Gupta, W.S.R. and Doube, B.M., 1995. Evaluation of soil biological properties as potential bio indicators of soil health. Australian Journal of Experimental Agriculture, 35: 1015-1028.
- Puget, .P, Angers, D.A. and Chenu, C., 1999. Nature of carbohydrates associated with water-stable aggregates of two cultivated soils. Soil Biology and Biochemistry, 31: 55-63.
- Rees, R.M., Bingham, I.J., Baddeley, J.A. and Watson, C.A., 2005. The role of plants and land management in sequestering soil carbon in temperate arable and grassland ecosystems. Soil Science Society of American Journal, 56: 125-132.
- Robert, M. and Chenu, C., 1992. Interactions between soil minerals and microorganisms. In: Bollag, J.M., Stotzky, G. (eds). Soil Biochemistry, Marcel Dekker, New York, 7: 307-393.
- Schoeneberger, P.J., Wysoki, D.A., Boenhm, E.C and Broderson, W.D, 2002. Field book for describing and sampling soils. Ver.2.0. Natural resource conservation service. National soil survey center, Lincoln, N.E., 208 p.
- Schoenholtz, S., 2000. A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. Forest Ecology and Management, 137: 13-28.
- Schulten, H.R. and Leindweber, P., 2000. New insights into organo-mineral particles: composition properties and models of molecular structure. Biology and Fertility Oils, 30: 399-432.
- Six, J., Conant, R.T., Poul, E.A and Paustian, K., 2002. Stabilization mechanisms of soil organic matter: Implication for C-saturation of soil. Plant and Soil, 241: 155-176.
- Six, J., Bossuyt, H., Degryze, S. and Denef, K., 2004. A history of research on the link between (micro) aggregate, Soil biota and soil organic matter dynamics. Soil & Tillage Research, 79: 7-31.
- Spaccini, R., Piccolo, A., Haberhauer, G. and Gerzabek, M.H., 2000. Transformation of organic matter from maize residues into labile and humic fractions of three European soils as revealed by 13C distribution and CPMAS-NMR spectra. Soil Science, 51: 583-594.
- Spohn, M. and Giani, L., 2011. Impact of land use change on soil aggregation and aggregate stabilizing compound as dependent on time. Soil Biology and Biochemistry, 43: 1081-1088.
- Toby O’geen, A., Prichard, T.L., Elkins, R. and Pettygrove, G.S., 2007. Orchard floor management practices to reduce erosion and protect water quality. University of California, Division of Agriculture and Natural Resources: 1-9.
- Vesterdal, L., Schmidt, I.K., Callesen, I., Nilsson, L.O. and Gundersen, P., 2008. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology Management, 255: 35-48.
- Wong, V.N.L., Greene, R.S.B., Murphy, B.W., Dalal, R. and Mann, S., 2005. Decomposition of added organic material in salt-affected soils. In 'Cooperative Research Centre for Landscape Environments and Mineral Exploration Regional Regolith Symposia 2005: 10 Years of CRC LEME', Canberra. (Ed. I Roach): 333-337.
- Xiongwen, CH. and Bai-Lian, L., 2003. Change in soil carbon and nutrient storage after human disturbance of primary Korean pine forest in Northern China. Forest Ecology and Management, 186:197-206.
- Yousefi, M., Hajabbasi, M. and Shariatmadari, H. 2008. Cropping system effects on carbohydrate content and water-stable aggregates in a calcareous soil of Central Iran. Soil and Tillage Research, 101: 57-61.
Received: 20.02.2012 Accepted: 01.04.2013
Since plantation has a major impact on carbon sequestration and soil quality, two sites with alder and poplar covers at three-replications in Safrabasteh Research Poplar Station at Guilan province of Iran were selected in order to investigate these effects. At each site, morphological, physical and chemical soil properties were studied upon standard laboratory methods. The results showed that bulk density, dispersible clay, wet aggregate stability measured as mean weight diameter, carbohydrates and amount of phosphor were significantly different among sites (p