A taxonomic study on *Stemphylium* species associated with black (sooty) head mold of wheat and barley in Iran

A. Poursafar

Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

Y. Ghosta

Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran

M. Javan–Nikkhah 🖾

Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

Abstract: Stemphylium as a monophyletic genus of filamentous ascomycetes, comprises both of saprophytic and plant pathogenic species with worldwide distribution. In an investigation of fungi associated with the black (sooty) head mold of wheat and barley in different regions of Golestan, Alborz and Qazvin provinces, thirty-two isolates with typical characteristics of the genus Stemphylium were recovered. All isolates were subjected to morphological assessments and DNA sequence analyses (ITS-rDNA and a part of GPDH gene). As a result, four species viz. Stemphylium alfalfae, S. eturmiunum, S. lycii and S. vesicarium were identified. The association of all identified species with the black head mold symptoms of wheat and barley is reported for the first time and S. eturmiunum and S. lycii are new records to the mycobiota of Iran.

Key words: Disease, morphology, DNA analysis, phylogeny, taxonomy

INTRODUCTION

The genus *Stemphylium* Wallr. was established with *S. botryosum* as the type species in 1833 (Wallroth 1833). Percurrent proliferation of conidiophores and production of single muriform and pigmented conidia on swollen conidiogenous cell at the tip of conidiophores are the main morphological characteristics of the genus (Simmons 1969). Association between *Stemphylium* and a teleomorph state (previously known as *Pleospora*) or sclerotial bodies, has been established for a number of *Stemphylium* species (Câmara et al. 2002). The number of described *Stemphylium* species vary from 20 (Câmara et al. 2002) up to 150 (Wang & Zhang 2006), while a search of Index Fungorum (May 2017; http://www.indexfungorum.org) lists 160 unique names. Over the past decade, more than 10 new species have been described (Wang & Zhang 2006, 2009; Wang et al. 2009, 2010; Pei et al. 2009, 2010, 2011; YanFang et al. 2012; Deng et al. 2014; Crous et al. 2016).

Before the development of molecular approaches in fungal taxonomy, species delimitation and identification in this genus was based primarily on the morphological characteristics including conidial shape, size, septation, length/width ratio and ornamentation. However, overlapping of these characters among the species and their dependences on environmental conditions such as temperature and substrate type has resulted in a complexity of the genus taxonomy (Leach & Aragaki 1970; Hosen et al. 2009; Chowdhury et al. 2015; Subash & Saraswati 2016).

In recent years, several molecular-based studies have been conducted using the sequence data of the internal transcribed spacer (ITS) of nuclear rDNA, mitochondrial small subunit (mtSSU) of rDNA, translation elongation factor 1-alpha ($TEF1-\alpha$), intergenic spacer between vmaA and vpsA and gene encoding glyceraldehyde-3-phosphate dehydrogenase (GPDH) to species delimitation and inferring phylogenetic relationship within the genus (Câmara et al. 2002; Pryor & Bigelow 2003; Kodsueb et al. 2006; Inderbitzin et al. 2009). However, sequence data were unable to distinguish some species that were clearly distinct by morphological characters which is necessary to combine morphological and molecular data to delimit species in this genus (Inderbitzin et al. 2009; Pei et al. 2011).

According to Farr and Rossman (2017), more than 90 *Stemphylium* species have been isolated from different host plants around the world. Several species *viz. S. alfalfae, S. botryosum, S. eturmiunum, S. globuliferum, S. herbarum, S. lotii, S. solani,* and *S. vesicarium* have been known to be plant pathogens on important agricultural crops (Seaney 1973; Elis & Gibson 1975; Irwin 1984; Johanson & Lunden 1986; Simmons 1990; Aveling & Snyman 1993).

Submitted 14 Oct. 2016, accepted for publication 17 Dec. 2016 ☐ Corresponding Author E-mail: jnikkhah@ut.ac.ir

 $[\]odot$ 2016, Published by the Iranian Mycological Society http://mi.iranjournals.ir

Black (sooty) head mold of wheat and barley is commonly in association with a diverse group of saprophytic or weakly parasitic fungi (Bockus et al. 2010). The typical symptom of black head mold in wheat and barley is the blackened appearances of mature or dead spikes under wet or humid weather conditions (Prescott et al. 1986). The presence of *Stemphylium* species with black head mold symptoms and grain discoloration of cereals have been reported in several publications (Zillinsky 1983; Prescott et al. 1986; Sisterna & Sarandon 2010; Hershman 2011; Zare 2013).

The aim of this study was isolation and identification of *Stemphylium* species associated with the black (sooty) head mold of wheat and barley in different regions of Golestan, Alborz and Qazvin provinces in Iran using morphological characters and molecular phylogenetic data.

MATERIALS AND METHODS

Sampling and isolation of Fungi

Samples with characteristic symptoms of black head mold were randomly collected from different wheat and barley fields in Golestan, Alborz and Qazvin provinces during spring and summer of 2014 and 2015. Samples were air dried for 1-2 days and kept at room temperature until processed. Isolation of fungal isolates was performed using a moist chamber (blotter) method. The growing fungi with typical characteristics of genus Stemphylium were picked up directly with a fine sterile needle and transferred onto the new potato dextrose agar (PDA) plates. Pure cultures were obtained by using single spore and hyphal tip methods on 2% water agar (2% WA) and PDA media, respectively. Purified isolates were placed on PCA slants including 20 g white potato, 20 g carrot and 20 g agar per 1 liter of distilled water and then kept at 4°C for further examination.

Morphological assessment

Morphological characters were assessed based on standardized condition suggested by Simmons (2001). Purified cultures were incubated at 23–25°C on Potato Carrot Agar (PCA) under cool/white fluorescent with 10/14 h light/dark photoperiod for 5–7 days. The Sellotape technique was used for slide preparation (Schubert et al. 2007) with 25% Lactic acid solution as mounting fluid. Macro– and micro–morphological features were recorded and compared with available literature. Pure cultures of all identified species were deposited in fungal culture collections of University of Tehran (UTFC) and Iranian Research Institute of Plant Protection (Table 1).

DNA extraction and PCR amplification

Total genomic DNA was extracted from single conidium cultures grown on 90 mm PDA petri plates according to Zhong & Steffenson (2001). The ITS– rDNA region and part of gelyceraldehyde–3– phosphate dehydrogenase (*GPDH*) gene were

amplified with the primer pairs ITS5/ITS4 (White et al. 1990) and gpd1/gpd2 (Berbee 1999), respectively. Each PCR mixture contained 10 µM of each primer, eight µL of a ready master mix (Taq 2X Master Mix Red 1.5 Mm, Amplicon Company, Denmark) and about 10 ng of template DNA in a final volume of 25 µL. Conditions for PCR amplification of the ITSrDNA region, consisted of an initial denaturation for 4 min at 95 °C followed by 35 cycles of 30 s denaturation at 95 °C, 30 s annealing at 56 °C and 60 s extension at 72 °C followed by a final extension step for 6 min at 72 °C. Part of GPDH gene was amplified using a touchdown (TD) PCR method (Korbie & Mattick 2008) of an initial denaturation for 90 s at 95 °C and then, a cycle of 60 s denaturation at 95 °C, 60 s annealing at 62 °C and 60 s extension at 72 °C, followed by 10 cycles with a 62-57 °C annealing temperature (annealing temperature decreased 0.5 °C per cycle) and 25 cycles with a 57 °C annealing temperature and a final extension for 5 min at 72 °C. The PCR products were purified and sequenced by Macrogen Corporation (South Korea). The newly generated sequences of ITS and GPDH in this study were submitted to GenBank (Table 1).

Phylogenetic analysis

The newly generated sequences were edited in BioEdit v. 7.2.5 (Hall 1999) and supplemented with sequences retrieved from GenBank (Table 1). Multiple sequence alignments were generated with MAFFT v. 7.304 (Katoh & Standley 2013), checked visually and improved manually where necessary. Neighbor Joining (NJ) and Maximum Parsimony (MP) analyses were performed using the ITS and GPDH combined datasets in PAUP 4.0 (Swofford 2002). The best fit model, general time reversible model (GTR) incorporating invariant sites (I) and gammadistribution rate (G), for NJ analysis was selected by Akaike Information Criterion (AIC) in Mr.Modeltest 2.3 (Nylander 2008). MP analysis was done by using heuristic searches with 1000 random sequence additions and branch swapping with tree-bisectionreconnection (TBR) algorithm and gaps treated as missing data. The bootstrap values with 1000 replicates were performed to determine branch support. Sequences of Alternaria alternata (CBS 916.96), Curvularia australis (Turgan 77139) and Bipolaris sorokiniana (Tinline A20) were used as outgroups. The generated trees were observed in TreeView v. 1.6.6 (Page 1996).

RESULTS and DISSCUSION

A total of thirty-two isolates with *Stemphylium* characteristics were collected from black (sooty) head mold symptoms of wheat and barley in different regions of Golestan, Alborz and Qazvin provinces. Based on the combination of morphological characteristics and sequence data obtained from ITS-rDNA region and *GPDH* locus, four species *viz. Stemphylium alfalfae, S. eturmiunum, S. lycii,* and *S.*

vesicarium were identified. Among the identified species, *S. vesicarium* and *S. alfalfae* were isolated more frequently than other species with 17 and nine isolates, respectively. The less frequently isolated species were *S. lycii* (four isolates) and *S. eturmiunum* (two isolates). Based on the available literature, all identified species are reported for the first time as *Stemphylium* species associated with black head mold of wheat and barley. *Stemphylium eturmiunum* and *S. lycii* are new records to the mycobiota of Iran. These two species, as well as *S. alfalfae* and *S. vesicarium* are described here alphabetically.

PCR amplification of ITS-rDNA region and a part of *GPDH* gene was generated DNA fragments about 550–570 and 570–590 bp, respectively. The BLAST searches of partial *GPDH* sequences showed a higher number of variable sites than the ITS sequences within the *Stemphylium* species. The alignment of ITS-*GPDH* sequence data matrix for 36 taxa was included a total of 1041 characters. The results showed that 718 characters were constant, 139 characters were variable and parsimony uninformative and 184 characters were parsimony informative. All examined characters were unordered and had equal weight. Phylogenetic analyses of ITS and GPDH combined dataset using MP and NJ methods resulted in phylogenetic trees with the same topologies. MP analysis using ITS and GPDH combined datasets yielded 24 most parsimonious trees (CI = 0.748, RI = 0.772, HI = 0.252). One of the most parsimonious trees was selected and the bootstrap values of MP and NJ analysis are shown at the nodes (Fig. 1). Two of identified species S. alfalfae and S. vesicarium clustered with those of S. alfalfae (EGS 36-088), S. herbarum (EGS 36-138.2), S. sedicola (EGS 48-095), S. tomatonis (EGS 29-089) and S. vesicarium (EGS 37-067) with 89/94% (MP/NJ) bootstrap supports. Results of previous studies have revealed that the species in this clade have nearly identical ITS and GPDH sequences, however their identification should be based on the morphological characters (Câmara et al. 2002; Inderbitzin et al. 2009). Isolates JS5-2, JS5-A and BT2–5 were well clustered with those of S. eturmiunum (EGS 29-099) (95/99% MP/NJ bootstrap supports) and S. lycii (CBS 125241) (100/100% MP/NJ bootstrap supports), respectively (Fig. 1).

Table 1. Species used for phylogenetic analyses. Newly generated sequences are in bold.

Species	Isolate/Strain —	GenBank accession number	
		ITS	GPDH
Alternaria alternata	CBS 916.96	AF347031	AY278808
Bipolaris sorokiniana	Tinline A20	AF071329	AF081385
Curvularia australis**	Turgan 77139	AF081448	AF081409
Stemphylium alfalfae	EGS 36–088	AF442775	AF443874
S. alfalfae	FA6-5/ UTFC 816	KX832962	KY346517
S. astragali	EGS 27–194.1	AF442777	AF443876
S. botryosum	NO 537	AF442780	AF442780
S. callistephi	NO 536	AF442783	AF443882
S. cucumis	CBS 125060	GU182942	GU182939
S. drummondii	CBS 346.83	GQ395365	GQ395371
S. eturmiunum	EGS 29–099	AY329230	AY317034
S. eturmiunum	JS5-2/ IRAN 2600C	KX832960	KY346516
S. gigaspora	EGS37-017	AY329177	AY316978
S. globuliferum	EGS 41–153	AF442806	AF443905
S. gracilariae	EGS 37-073	AF442784	AF443883
S. herbarum	EGS 36-138.2	AF442785	AF443884
S. lancipes	EGS 46–182	AF442787	AF443886
S. loti	NO 1364	AF442788	AF443887
S. luffae	CBS 124985	GU182943	GU182940
S. lycii	CBS 125241	GU182941	GU182938
S. lycii	JS5-A/ IRAN 2602C	KX832959	KY346515
S. lycii	BT2-5/ UTFC 817	KY346513	KY346514
S. lycopersici	EGS 46-001	AF442790	AF443889
S. majusculum	EGS 29–094	AF442792	AF443891
S. paludiscirpi	EGS31-016	AY329231	AY317035
S. phaseolina	CBS 124650	GQ395369	GQ395374
S. sarciniforme	EGS 38–121	AF442793	AF443892
S. sedicola	EGS 48–095	AY329232	AY317036
S. solani	EGS41–135	AY329214	AY317018
S. subglobuliferum	HSAUP_XF0140	AY751454	AY751459
S. tomatonis	EGS 29–089	AY329229	AY317033
S. trifolii	NO 712	AF442800	AF443899
S. triglochinicola	EGS 36–118	AF442802	AF443901
S. vesicarium	EGS 37–067	AF442803	AF443902
S. vesicarium	FA6-6/ UTFC 818	KX832961	KY346518
S. xanthosomatis	EGS 17–137	AF442804	AF443903

^{**} This species appears in GenBank as *Bipolaris australis*. It has synonymized with *Curvularia australis* according to Manamgoda et al. (2014).

Fig. 1. One of the most parsimonious trees generated from Maximum Parsimony analysis based on the ITS–rDNA and *GPDH* combined datasets. The bootstrap values (>50%) of MP and NJ analysis are shown at the nodes (MP/NJ). Isolates in bold were identified in present study. *Alternaria alternata* (CBS 916.96), *Curvularia australis* (Turgan 77139) and *Bipolaris sorokiniana* (Tinline A20) are used as outgroups.

Stemphylium alfalfae E.G. Simmons, Sydowia 38: 292 (1986) [1985] (Fig. 2a–f)

Colonies on PCA reached to 60 mm in diameter after seven days. They were flat and gray at center and creamy at margin with distinct olive to light brown concentric growth zones. Mycelia were superficial and composed of branched, septate, pale brown and smooth–walled hyphae. Sporulation was abundant on PCA, mostly from superficial hyphae and to a lesser extends from aerial hyphae. Conidiophores were straight or curved, pale brown, septate and reached to 110 μ m in length. Conidiogenous cells swollen at the apex and were brown, 6–7 μ m in wide and occasionally with 1–3 apical proliferations. Conidia developed singly at the apex of each conidiophore and were pale brown with darker septa. They were minutely vertucose, cylindrical, spherical, oblong to

ellipsoidal, rounded at the apex and the base, mostly with 1–3 transverse septa, 2–4 longitudinal septa and 1–3 oblique septa, usually with distinct constriction at the median septum, L/W= 1.25–3.5 and 18–38 × 8–20 μ m (Fig. 2b–d).

Ascomata formed abundantly on PCA after seven days and matured after four weeks. They were dark brown, thick–walled, spherical to subspherical. Asci were bitunicate, hyaline, straight or curved, 8–spored and 100–225 × 27–33 μ m. Ascospores were oblong spherical, pale brown with darkened septa, 6–7 transverse septa, 5–7 longitudinal septa and 35–37 × 12–17 μ m (Fig. 2e–f).

Specimens examined. IRAN, Golestan province, Fazel Abad, on wheat head, May 2014, A. Poursafar, FA6–5 (UTFC 816) and FA6–10; Golestan province, Gorgan, on wheat head, May 2014, A. Poursafar, G10– 7; Golestan province, Ali Abad–e Katul, on wheat head, May 2014, A. Poursafar, Al6–11; Alborz Province, Nazar Abad, on wheat head, June 2015, A. Poursafar, NZA1–A and NZA1–6; Alborz Province, Mohammad Shahr, on wheat head, June 2015, A. Poursafar, MHA5–8.

Based on ITS and *GPDH* sequence analyses, *Stemphylium alfalfae* is clustered with those of *S. herbarum*, *S. sedicola*, *S. tomatonis* and *S. vesicarium* (Fig. 1). Furthermore, it is morphologically close to *S. vesicarium* and *S. tomatonis*. According to Câmara et al. (2002) and Inderbitzin et al. (2009), ITS and *GPDH* sequences of mentioned species are nearly identical and their identification is dependent on morphological characteristics of the asexual and sexual states.

Stemphylium alfalfae was first described on alfalfa plants (Medicago sativa L.) in Western Australia (Simmons 1985). In Iran, this species was recently reported from alfalfa plants in Hamedan province (Bagherabadi et al. 2015), in which the authors erroneously referred to the first report of *S. alfalfae* in Iran according to Ershad (2009). When this reference was searched, no citation of *S. alfalfae* was observed and we found only a citation indicating the isolation of *S. botryosum* (Tel. *Pleospora tarda*) from alfalfa in Mollasani, Ahwaz (Mohajer–Shojai & Ebrahimi 1969). So as it was not described previously in Iran, we have provided a full description of this species here.

Stemphylium eturmiunum E.G. Simmons, Harvard Papers in Botany 6 (1): 204 (2001) (Fig. 3a–f)

Colonies on PCA after seven days reached to 55 mm diam. They were flat, pale olive to light brown without distinct concentric growth zones. Mycelia were superficial or submerged, superficial mycelia composed of branched, septate, pale brown, smooth walled hyphae and 4–6 μ m in wide. Sporulation were abundant on PCA, predominantly from short conidiogenous branches of hyphae that arise singly or in fascicles from substrate. Aerial axis hyphae commonly formed and reached to 1 mm or more long, bearing a large number of short up to 50 μ m in length and pale brown conidiophores with a tip cell slightly swollen (5–8 μ m wide).

Fig. 2. Stemphylium alfalfae (UTFC 816). a. Colony on PCA; b-d. Conidiophores and conidia; e-f. Asci and ascospores.

Fig. 3. Stemphylium eturmiunum (IRAN 2600 C). a. Colony on PCA; b. Fascicle of hyphae bearing short conidiogenous branches with conidia; c–d. Conidiophores and conidia; e–f. Asci and ascospores.

Conidia developed singly at the apex of each conidiophore and appeared medium to dark brown with even darker septa, punctuated wall, broadly ovoid or ellipsoid, spherical to oblong, rounded at the base and spherical to conical at the apex, mostly with 1-3(-4) transverse septa, 1-4 longitudinal septa or irregularly oblique septa, distinctly constricted at the median septum, L/W= 1.15-2.69 and $18-35 \times 10-20$ µm (Fig. 3a–d).

Ascomata formed abundantly on PCA after seven days and matured after 1–2 months. They were dark brown with thick–wall and spherical to subspherical. Asci were bitunicate, hyaline, oblong or long ovoid, straight or curved, 8–spored and 100–225 × 27–33 μ m. Ascospores were ellipsoid to broadly ellipsoid, oblong, pale brown with darkened septa and rounded at both ends. They usually were constricted at the median transverse septum and extended at the top one–third of the ascospores, with 6–8 transverse septa, 6–7 longitudinal septa and 29–37 × 13–16 μ m (Fig. 3e–f).

Specimens examined. IRAN, Golestan province, Sari–Gorgan road, on wheat head, May 2014, A. Poursafar, JS5–2 (IRAN 2600 C) and JS8–6.

Stemphylium eturmiunum was first described morphologically by Simmons (2001) from tomato (Solanum lycopersicon) fruits with Pleospora eturmiuna as its teleomorph in New Zealand. Andersen & Frisvad (2004) have reported S. eturmiunum as a causal agent of postharvest mold in tomato. In recent years, this species was reported as the causal agent of blight and leaf spot of onion in Puerto Rico (Fernandez & Rivera– Vargas 2008). Newly, five *Stemphylium* isolates have been isolated from air samples of pear orchards in Spain and determined as *S. eturmiunum* based on ITS and *GPDH* sequence data (Puig et al. 2015). This species is similar to *S. symphyti*, but it can be distinguished by its smaller conidia size.

Stemphylium lycii Y.F. Pei & X.G. Zhang, Mycological Progress 10 (2): 163–73 (Fig. 4a–f)

Colonies on PCA after seven days reached to 40 mm diam. They appeared olive to olivaceous brown with distinct concentric zones of growth and sporulation. Sporulation was abundant mostly from superficial hyphae. Hyphae were superficial or submerged, pale brown with smooth wall, septate, branched and 3-4 µm in wide. Conidiophores were straight or curved, mostly unbranched or rarely branched, pale brown, septate and up to 190 µm in length. Conidiogenous cells swollen at the apex and were medium to dark brown, 5-7 µm in wide and occasionally 1-5 apical proliferations. Conidia formed singly at the tip of conidiogenous cell and were pale to dark brown with the densely pustular wall, mostly spherical, ovoid to oblong, rounded at the base and round to conical at the apex, mostly with 1-3(4)transverse septa, 0-3 longitudinal septa and 0-3 oblique septa, distinct constriction at the median septum, L/W= 1.21–2.15 and 19–30 \times 11–18 µm (Fig. 4b–c).

Ascomata formed abundantly on PCA and matured after 2–3 months. They observed dark brown with a

Fig. 4. Stemphylium lycii (IRAN 2602C). a. Colony on PCA; b-c. Conidiophores and conidia; d-f. Asci and ascospores.

thick wall and spherical to subspherical. Asci were bitunicate, hyaline, straight or curved, 8–spored and $100-275 \times 24-30 \ \mu\text{m}$. Ascospores were pale brown with darkened septa, spherical, fusiform or oblong, rounded at the base and conical at the apex, with 8–9 transverse septa, 8–9 longitudinal septa and 1–2 oblique septa, distinct constriction at the median transverse septum and extended at the top one–third of the ascospores and (31–)35–38(–45) × (12–)13–15(–16) μ m (Fig. 4d–f).

Specimens examined. IRAN, Golestan province, Sari–Gorgan road, on wheat head, May 2014, A. Poursafar, JS5–A (IRAN 2602 C) and JS4–3; Golestan province, Bandar–e Turkman, on wheat head, May 2014, A. Poursafar, BT2–5 (UTFC 817) and BT67–3; Golestan province, Gonbad–e Kavus, on barley head, May 2014, A. Poursafar, B8–1; Qazvin province, Abyek, on wheat head, June 2014, A. Poursafar, ABY2–6.

Stemphylium lycii was first isolated and described from diseased leaves of Lycinum chinense Mill. in the northwest of China (Pei et al. 2011). In the original description of this species, the formation of sexual state has not been included. However, in the present study, the sexual morph of this species was formed frequently. Stemphylium lycii morphologically resembles S. sedicola (Simmons 2001) and S. trifolii (Graham 1953), however it can be distinguished from S. sedicola and S. trifolii by its smaller conidia, distinct constriction at median transverse septum, conidial wall ornamentation and longer conidiophores. *Stemphylium vesicarium* (Wallr.) E.G. Simmons, Mycologia 61 (1): 9 (1969) (Fig. 5a–f)

Colonies on PCA after seven days reached to 60 mm diam. They were Olivaceous green to light brown with concentric zones of growth and sporulation. Sporulation were abundant mostly from superficial hyphae and to a lesser extent from submerged hyphae. Hyphae were pale brown, septate, branched and 5–7 μ m in wide. Conidiophores were straight or curved, pale brown, septate, short to moderate and 20–75 × 5–7 μ m in size. Conidiogenous cells were swollen at the apex, dark brown, 6–8 μ m in wide and occasionally with 1–4 apical proliferations. Matured conidia were dark brown, spherical to oblong, cylindrical to rectangular, rounded at the base and conical to angular at the apex, with 6–7 transverse septa, 1–5 longitudinal septa, 1–4 oblique septa and 24–48 × 11–20 μ m.

Ascomata formed abundantly on PCA after seven days and matured after 3–4 months. Asci were bitunicate, hyaline, 8–spored and 150–210 \times 40–45 μ m. Ascospores were pale brown, rounded at the base and conical at the apex, with 7–9 transverse septa, 7–9 longitudinal septa, 1–2 oblique septa, usually constricted at the median transverse septum and 33–37 \times 14–17 μ m.

Specimens examined. IRAN, Golestan province, Fazel Abad, on wheat head, May 2014, A. Poursafar, FA6–6 (UTFC 818), FA6–B and FA2–9; Golestan province, Bandar–e Gaz, on wheat head, May 2014, A. Poursafar, BG2–8; Golestan province, Daland, on

Fig. 5. Stemphylium vesicarium (UTFC 818). a. Colony on PCA; b-d. Conidiphores and conidia; e-f. Asci and ascospores.

wheat head, May 2014, A. Poursafar, DAL6; Qazvin province, Buin–Zahra, on wheat head, June 2015, A. Poursafar, BUQ6–3, BUQ6–6 and BUQ6–9.

This species was first described from onion plants by Simmons (1969). It is distinguished from other similar species such as *S. botryosum* and *S. herbarum* based on the morphological characteristics of asexual and sexual states, respectively (Simmons 1969). *Stemphylium vesicarium* is known as a plant pathogenic fungus and causes leaf spot on a wide variety of plant species. According to Farr and Rossman (2017), it was associated with more than 20 plant species worldwide. The occurrence of this species has been reported previously in Iran in different studies (Ershad 2009; Aghajani 2009; Arzanlou et al. 2012; Pirnia & Bicharanlou 2013; Bagherabadi et al. 2015).

ACKNOWLEDGEMENTS

The authors would like to thank the High Council for Research of University of Tehran for financial support of this project.

REFERENCES

- Aghajani MA. 2009. Stemphylium leaf blight of broad bean in Iran. Journal of Plant Pathology 91: 103. Supplement
- Andersen B, Frisvad JC. 2004. Natural occurrence of fungi and fungal metabolites in moldy tomatoes.

Journal of Agricultural and Food Chemistry 52: 7507–7513.

- Arzanlou M, Khodaei S, Babai–Ahari A. 2012. Helianthus annuus as a natural host for Stemphylium vesicarium in Iran. Australasian Plant Disease Notes 7: 167–170.
- Aveling TAS, Snyman HG. 1993. Infection studies of Stemphylium vesicarium on onion leaves. Mycological Research 97: 984–988.
- Bagherabadi S, Zafari D, Soleimani MJ. 2015. A report on the Alternaria species and its similar genera in Hamedan province. Taxonomy and Biosystematics 7: 95–112.
- Berbee ML, Pirseyedi M, Hubbard S. 1999. Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde–3–phosphate dehydrogenase gene sequences. Mycologia 91: 964–977.
- Bockus WW, Bowden RL, Hunger RM, Morrill WL, Murray TD, Smiley RW. 2010. Compendium of wheat diseases and pests, 3rd ed. APS Press, St. Paul, Minnesota, USA.
- Câmara MP, O'Neill NR, Van Berkum P. 2002. Phylogeny of Stemphylium spp. based on ITS and glyceraldehyde–3–phosphate dehydrogenase gene sequences. Mycologia 94: 660–672.
- Chowdhury HA, Islam N, Hossain B, Ahmed M, Mohsin S, Islam R. 2015. A comparative analysis of culture media for optimizing the mycelial growth and sporulation of Stemphylium vesicarium cause

of white blotch of onion. Journal of Agricultural Science and Technology 5: 440–448.

- Crous PW, Wingfield MJ, Richardson DM, Leroux JJ, Strasberg D, Edwards J, Roets F, Hubka V, Taylor PWJ, Heykoop M, Martín MP, Moreno G, Sutton DA, Wiederhold NP, Barnes CW, Carlavilla JR, Gené J, Giraldo A, Guarnaccia V, Guarro J, Hernández-Restrepo M, Kolařík M, Manjón JL, Pascoe IG, Popov ES, Sandoval-Denis M, Woudenberg JHC, Acharya K, Alexandrova AV, Alvarado P, Barbosa RN, Baseia IG, Blanchette RA, Boekhout T, Burgess TI, Cano-Lira JF, Čmoková A, Dimitrov RA, Dyakov My, Dueñas M, Dutta AK, Esteve-Raventós F, Fedosova AG, Fournier J, Gamboa P, Gouliamova DE, Grebenc T, Groenewald M, Hanse B, Hardy GESTJ, Held BW, Jurjević Ž, Kaewgrajang T, Latha KPD, Lombard L, Luangsa-ard JJ, Lysková P, Mallátová N, Manimohan P, Miller AN, Mirabolfathy M, Morozova OV, Obodai M, Oliveira NT, Ordóñez ME, Otto EC, Paloi S, Peterson SW, Phosri C, Roux J, Salazar WA, Sánchez A, Sarria GA, Shin H-D, Silva BDB, Silva GA, Smith MTH, Souza-Motta CM, Stchigel AM, Stoilova-Disheva MM, Sulzbacher MA, Telleria MT, Toapanta C, Traba JM, Valenzuela-Lopez N, Watling R, Groenewald JZ. 2016. Fungal planet description sheets: 400-468. Persoonia 36: 326-458.
- Deng JX, Paul NC, Li MJ, Cho HS, Lee HB, Yu SH. 2014. Stemphylium platycodontis sp. nov., isolated from Platycodon grandiflorus in Korea. Mycological Progress 13: 477–482.
- Ellis MB, Gibson IAS. 1975. Stemphylium solani. C.M.I. Descriptions of Pathogenic Fungi and Bacteria 472: 1–2.
- Ershad D. 2009. Fungi of Iran. Ministry of Jihad–e– Agriculture. Agricultural Research, Education and Extension Organization, Iran.
- Farr DF, Rossman AY. 2017. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved May 15, from http://nt.ars-grin.gov/fungaldatabases/.
- Fernandez J, Rivera–Vargas LI. 2008. Leaf blight of onion caused by Pleospora eturmiuna Simm. (teleomorph of Stemphylium eturmiunum) in Puerto Rico. Journal of Agriculture of the University of Puerto Rico 92: 235–239.
- Graham JH. 1953. A disease of birdsfoot trefoil caused by a new species of Stemphylium. Phytopathology 43: 577–579.
- Hall TA. 1999. BioEdit: a user–friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
- Hosen MI, Ahmed AU, Zaman J, Ghosh S, Hossain KM. 2009. Cultural and physiological variation between isolates of Stemphylium botryosum the causal of Stemphylium blight disease of lentil (Lens culinaris). World Journal of Agricultural Sciences 5: 94–98.

- Inderbitzin P, Mehta YR, Berbee ML. 2009. Pleospora species with Stemphylium anamorphs: a four locus phylogeny resolves new lineages yet does not distinguish among species in the Pleospora herbarum clade. Mycologia 101: 329–339.
- Irwin JAG. 1984. Etiology of a new Stemphylium– incited leaf disease of alfalfa in Australasian. Plant Disease 68: 531–532.
- Johnson DA, Lunden JD. 1986. Effects of wounding and wetting duration on infection of asparagus by Stemphylium vesicarium. Plant Disease 70: 419– 420.
- Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.
- Kodsueb R, Dhanasekaran V, Aptroot A, Lumyong S, McKenzie EH, Hyde KD, Jeewon R. 2006. The family Pleosporaceae: intergeneric relationships and phylogenetic perspectives based on sequence analyses of partial 28S rDNA. Mycologia 98: 571– 583.
- Korbie DJ, Mattick JS. 2008. Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nature Protocols 3: 1452–1456.
- Leach CM, Aragaki M. 1970. Effects of temperature on conidium characteristics of Ulocladium chartarum and Stemphylium floridanum. Mycologia 62: 1071–1076.
- Manamgoda DS, Rossman AY, Castlebury LA, Crous PW, Madrid H, Chukeatirote E, Hyde KD. 2014. The genus Bipolaris. Studies in Mycology 79: 221– 288.
- Mohajer–Shojai MH, Ebrahimi AG. 1969. Stemphylium leaf spot of alfalfa in Mollasani, Ahwaz. Iranian Journal of Plant Pathology 5: 8–9.
- Nylander JAA. 2004. MrModeltest 2.3. distributed by the author. Uppsala University, Uppsala, Sweden.
- Page RD. 1996. Treeview, tree drawing software for Apple Macintosh and Microsoft Windows. Division of Environmental and Evolutionary Biology, Institute of Biomedical and Life Sciences, University of Glasgow. Glasgow, Scotland, UK.
- Pei YF, Geng Y, Wang Y, Zhang XG. 2009. Two new species of Stemphylium from Sinkiang, China. Mycotaxon 109: 493–497.
- Pei YF, Wang Y, Geng Y, O'Neill NR, Zhang XG. 2011. Three novel species of Stemphylium from Sinkiang, China: their morphological and molecular characterization. Mycological Progress 10: 163–173.
- Pei YF, Wang Y, Geng Y, Zhang XG. 2010. Three new species of Stemphylium from Sinkiang, China. Mycotaxon 111: 167–173.
- Pirnia M, Bicharanlou B. 2013. Primary study of the genera Stemphylium and Ulocladium in Iran. Proceedings of the first Iranian Mycological Congress, 3–5 Sep. Rasht, Iran.
- Prescott JM, Burnett PA, Saari EE, Ransom J, Bowman J, de Milliano W, Singh RP, Bekele G.

1986. Wheat diseases and pests; a guide for field identification. CIMMYT, Mexico.

- Pryor BM, Bigelow DM. 2003. Molecular characterization of Embellisia and Nimbya species and their relationship to Alternaria, Ulocladium and Stemphylium. Mycologia 95: 1141–1154.
- Puig M, Ruz L, Montesinos E, Moragrega C, Llorente I. 2015. Combined morphological and molecular approach for identification of Stemphylium vesicarium inoculum in pear orchards. Fungal Biology 119: 136–144.
- Schubert K, Groenewald JZ, Braun U, Dijksterhuis J, Starink M, Hill CF, Zalar P, De Hoog GS, Crous PW. 2007. Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics. Studies in Mycology 58: 105–156.
- Seaney RR. 1973. Birdsfoot trefoil. In: Forages, the science of grassland agriculture. (ME Heath, DS Metcalfe, RF Barnes, eds): 177–188. The Iowa State University Press, Ames, Iowa, USA.
- Simmons EG. 1969. Perfect states of Stemphylium. Mycologia 61: 1–26.
- Simmons EG. 1985. Perfect states of Stemphylium II. Sydowia 38: 284–293.
- Simmons EG. 1990. Stemphylium leaf spot Causal organisms. 17–20. In: Compendium of alfalfa diseases. 2nd ed. (DL Stuteville, DC Erwin, eds): 84. APS Press, St. Paul, Minnesota, USA.
- Simmons EG. 2001. Perfect states of Stemphylium— IV. Harvard Papers in Botany 199–208.
- Sisterna M, Sarandón S. 2010. Wheat grain discoloration in Argentina: Current Status. The

American Journal of Plant Science and Biotechnology 3: 54–64.

- Subash S, Saraswati N. 2016. Effect of incubation temperature on mycelial growth, conidial features and density of Stemphylium botryosum Walr. isolates. Kathmandu University Journal of Science, Engineering and Technology 12: 80–89.
- Swofford DL. 1999. PAUP, Phylogenetic analysis using parsimony, version 4.0b2. Sunderland, Massachusetts: Sinauer Associates, Inc, USA.
- Wallroth FG. 1833. Flora Cryptogamica Germaniae, pars. post.: Nurenberg: J. L. Schrag 923 p.
- Wang Y, Fu HB, O'Neill NR, Zhang XG. 2009. Two new species of Stemphylium from Northwest China. Mycological Progress 8: 301–304.
- Wang Y, Geng Y, Pei YF, Zhang XG. 2010. Molecular and morphological description of two new species of Stemphylium from China and France. Mycologia 102: 708–717.
- Wang Y, Zhang XG. 2006. Three new species of Stemphylium from China. Mycotaxon 96: 77–81
- Wang Y, Zhang XG. 2009. Two new species of Stemphylium from Shandong, China. Nova Hedwigia 88: 199–203.
- YanFang Z, YingLan G, BaoJu L. 2012. A new species of Stemphylium on Basella rubra. Mycosystema 31: 165–167.
- Zare L. 2013. The causal agent of barley black point disease in certified seed loads in Iran. International Journal of Agriculture and Crop Sciences 5: 332.
- Zhong S, Steffenson BJ. 2001. Virulence and molecular diversity in Cochliobolus sativus. Phytopathology 91: 469–476.
- Zillinsky FJ. 1983. Common diseases of small grain cereals. a guide to identification. CIMMYT, Mexico.

مطالعه تاکسونومیکی گونههای Stemphylium همراه علایم کپک سیاه (دودهای) خوشههای گندم و جو در ایران

علیرضا پورصفر ^۱، یوبرت قوستا ۲ و محمد جوان نیکخواه ٔ ⊠ ۱– گروه گیاهپزشکی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج ۲– گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه

چکیده: جنس Stemphylium به عنوان یک جنس تکنیایی از قارچهای آسکومیست رشته ای، شامل گونه های پوده زیست و بیمارگر گیاهی و با گسترش جهانی است. در بررسی قارچهای همراه با علایم کپک سیاه (دوده ای) خوشه های گندم و جو در استان های گلستان، البرز و قزوین، تعداد ۳۲ جدایه با مشخصات بارز جنس Stemphylium بدست آمدند. تمامی جدایه های جمع آوری شده بر اساس صفات ریخت شناختی و تجزیه های توالی توکلئوتیدی DNA (شامل بخش Stemphylium هسته ای و بخشی از ژن GPDH) ارزیابی شدند. در مجموع، چهار گونه شامل BC « توالی توکلئوتیدی S. lycii «S. eturmiunum مسته ای و بخشی از ژن GPDH) ارزیابی شدند. در مجموع، چهار گونه شامل S. vesicarium بار به عنوان گونه های جنس S. vesicarium همراه با علایم کپک سیاه (دوده ای) خوشه های گندم و جو از ایران و دنیا گزارش می شوند. همچنین بار به عنوان گونه های جنس S. stemphylium همراه با علایم کپک سیاه (دوده ای) خوشه های گندم و جو از ایران و دنیا گزارش می شوند. همچنین دو گونه همراه گونه های جنس S. stemphylium منابع علمی موجود، تمامی گونه های شناسایی شده برای اولین ایران به همراه گونه همای جنس S. stemphylium می قرار گزارش شده، اما توصیف نگردیده است و نیز گونه می می شوند. هر ای ای بی توالی تو کیم می ای ای این و دنیا گزارش می شوند. همچنین ایران به همراه گونه S. alfalfae که قبلا از ایران گزارش شده، اما توصیف نگردیده است و نیز گونه هم دو گونه جدید برای بیوتای قارچی ایران به همراه گونه S. alfalfae که قبلا از ایران گزارش شده، اما توصیف نگردیده است و نیز گونه همراه گونه میده می می شوند.

كلمات كليدى: بيمارى، ريخت شناسى، تجزيه DNA، فيلوژنى، تاكسونومى