- Adiyah, F., Michéli, E., Csorba, A., Weldmichael, T. G., Gyuricza, C., Ocansey, C. M., ... & Fuchs, M. (2022). Effects of landuse change and topography on the quantity and distribution of soil organic carbon stocks on Acrisol catenas in tropical small-scale shade cocoa systems of the Ashanti region of Ghana. Catena, 216, 106366. https://doi.org/10.1016/j.catena.2022.106366
- Anderson, J. P. (1982). Soil respiration. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 831-871. https://doi.org/10.2134/agronmonogr9.2.2ed.c41
- Beare, M. H., Hendrix, P. F., & Coleman, D. C. (1994). Water‐stable aggregates and organic matter fractions in conventional‐and no‐tillage soils.Soil Science Society of America Journal, 58(3), 777-786. https://doi.org/10.2136/sssaj1994.03615995005800030020x
- Beheshti, A. A. A., Raiesi, F., & GOLCHIN, A. (2011). The effects of soil disturbance due to land use change of forest lands to cultivated lands on biological soil quality indices of forest ecosystems of Northern Iran. https://sid.ir/paper/211228/en
- Blake, G. R., & Hartge, K. H. (1986). Bulk density. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 363-375.
- Bower, C. A., Reitemeier, R. F., & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil science, 73(4), 251-262.
- Buraka, T., Elias, E., & Lelago, A. (2022). Soil organic carbon and its' stock potential in different land-use types along slope position in Coka watershed, Southern Ethiopia. Heliyon, 8(8). https://doi.org/10.1016/j.heliyon.2022.e10261
- Chen, S., Zhang, G., Zhu, P., Wang, C., & Wan, Y. (2023). Impact of land use type on soil erodibility in a small watershed of rolling hill northeast China. Soil and Tillage Research, 227, 105597. https://doi.org/10.1016/j.still.2022.105597
- Cotrufo, M. F., Haddix, M. L., Kroeger, M. E., & Stewart, C. E. (2022). The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter. Soil Biology and Biochemistry, 168, 108648. https://doi.org/10.1016/j.soilbio.2022.108648
- de Pierri Castilho, S. C., Cooper, M., Dominguez, A., & Bedano, J. C. (2016). Effect of land use changes in eastern amazonia on soil chemical, physical, and biological attributes. Soil Science, 181(3/4), 133-147. DOI: 10.1097/SS.0000000000000152
- De Rosa, D., Ballabio, C., Lugato, E., Fasiolo, M., Jones, A., & Panagos, P. (2024). Soil organic carbon stocks in European croplands and grasslands: How much have we lost in the past decade?. Global Change Biology, 30(1), e16992. https://doi.org/10.1111/gcb.16992
- Ding, J. N. (2023). Effect Of Cultivation and Natural Restoration On Soil Microbial Functional Structure In Coldregion Wetlands. Applied Ecology & Environmental Research, 21(2). 15666. DOI: http://dx.doi.org/10.15666/aeer/2102_14711484
- Ebrahimi, M., S. Kashani & A. Moghadam, 2016. Effect of range land change to Aggricultural on soil
Water and Soil journal, 1(26): 31-44 (in Persian).
- Estefan, G., Sommer, R., & Ryan, J. (2013). Methods of soil, plant, and water analysis: a manual for the West Asia and North Africa region. https://hdl.handle.net/20.500.11766/7512
- Eze, S., Magilton, M., Magnone, D., Varga, S., Gould, I., Mercer, T. G., & Goddard, M. R. (2023). Meta-analysis of global soil data identifies robust indicators for short-term changes in soil organic carbon stock following land use change. Science of the Total Environment, 860, 160484. https://doi.org/10.1016/j.scitotenv.2022.160484
- Ferreira, A. C. C., Leite, L. F. C., de Araújo, A. S. F., & Eisenhauer, N. (2016). Land‐use type effects on soil organic carbon and microbial properties in a semi‐arid region of northeast Brazil.Land Degradation & Development, 27(2), 171-178. https://doi.org/10.1002/ldr.2282
- Frąc, M., Lipiec, J., Usowicz, B., Oszust, K., & Brzezińska, M. (2020). Structural and functional microbial diversity of sandy soil under cropland and grassland. PeerJ, 8, e9501. https://doi.org/10.7717/peerj.9501
- Gee, G.W. and Bauder J.M. (1986). Partical-size analysis. In Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods. Agronomy Monogroph No. 9 (2nd edition), American Society of Agronomy, Madison, WI. Pp 383-411. https://doi.org/10.2136/sssabookser5.1.2ed.c15
- Geremew, B., Tadesse, T., Bedadi, B., Gollany, H. T., Tesfaye, K., & Aschalew, A. (2023). Impact of land use/cover change and slope gradient on soil organic carbon stock in Anjeni watershed, Northwest Ethiopia. Environmental Monitoring and Assessment, 195(8), 971. https://doi.org/10.1007/s10661-023-11537-7
- Guibert, H., Fallavier, P., & Roméro, J. J. (1999). Carbon content in soil particle size and consequence on cation exchange capacity of alfisols. Communications in soil science and plant analysis, 30(17-18), 2521-2537. https://doi.org/10.1080/00103629909370392
- Hemmati, S. , Moravej, K. , Golchin, A. and Askari, M. S. (2025). Assessment of the Impact of Land Use Change on Soil Physical, Chemical, and Biological Properties: A Case Study in the Loshan Region, Gilan Province. Iranian Journal of Soil and Water Research, (), -. doi: 10.22059/ijswr.2025.395186.669938. (In Persian). 22059/ijswr.2025.395186.669938
- Hesse P.R. 1971. A text book of soil chemical analysis. John Murray. London. https://doi.org/10.1201/9780203739433
- Hydari, N., Mousavi, S. B., Beheshti Ale Agha, A., Rakhsh, F., & Karimi, I. (2022). The effect of land use change on some physical, chemical and biological characteristics of soil. Iranian Journal of Soil and Water Research, 53(7), 1625-164. (In Persian). 22059/ijswr.2022.344871.669298
- Javadi S, Zehtabian G, Khosravi H, Abolhasani A.(2020) Assessing the impact of land use change on Soil physical and chemical characteristics (Case study: Eshtehard, Alborz province).220-208:(2) 14. (In Persian). 1001.1.20080891.1399.14.2.4.4
- Joshi, R. K., & Garkoti, S. C. (2023). Influence of vegetation types on soil physical and chemical properties, microbial biomass and stoichiometry in the central Himalaya. Catena, 222, 106835. https://doi.org/10.1016/j.catena.2022.106835
- Knudsen D., Peterson G.A. and Pratt P.F. (1982). Lithium, sodium and potassium. p. 225-246. In: A.L. Page (ed) Methods of Soil Analysis. Part 2. America Society of Agronomy. Madison, WI. https://doi.org/10.2134/agronmonogr9.2.2ed.c13
- Kooch, Y., Ghorbanzadeh, N., Kuzyakov, Y., Praeg, N., & Ghaderi, E. (2022). Investigation of the effects of the conversion of forests and rangeland to cropland on fertility and soil functions in mountainous semi-arid landscape. Catena, 210, 105951. https://doi.org/10.1016/j.catena.2021.105951
- Krogh, L., Breuning-Madsen, H., & Greve, M. H. (2000). Cation-exchange capacity pedotransfer functions for Danish soils. Acta Agriculturae Scandinavica, Section B-Plant Soil Science, 50(1), 1-12. https://doi.org/10.1080/090647100750014358
- Leul, Y., Assen, M., Damene, S., & Legass, A. (2023). Effects of land use types on soil quality dynamics in a tropical sub-humid ecosystem, western Ethiopia. Ecological Indicators, 147, 110024. https://doi.org/10.1016/j.ecolind.2023.110024
- Levy, G. J., Dag, A., Raviv, M., Zipori, I., Medina, S., Saadi, I., ... & Laor, Y. (2018). Annual spreading of olive mill wastewater over consecutive years: Effects on cultivated soils' physical properties. Land Degradation & Development, 29(1), 176-187. https://doi.org/10.1002/ldr.2861
- Li, C., Wang, H., Zhao, L., & Shen, H. (2024). Effect of long-term land use change on soil organic carbon fractions and functional groups. Arid Land Research and Management, 38(2), 182-200. https://doi.org/10.1080/15324982.2023.2284882
- Li, H., Zhu, H., Liang, C., Wei, X., & Yao, Y. (2022). Soil erosion significantly decreases aggregate-associated OC and N in agricultural soils of Northeast China. Agriculture, Ecosystems & Environment, 323, 107677. https://doi.org/10.1016/j.agee.2021.107677
- Llimós, M., Segarra, G., Sancho-Adamson, M., Trillas, M. I., & Romanyà, J. (2021). Impact of olive saplings and organic amendments on soil microbial communities and effects of mineral fertilization. Frontiers in Microbiology, 12, 653027. https://doi.org/10.3389/fmicb.2021.653027
- Martínez-Mena, M., Carrillo-López, E., Boix-Fayos, C., Almagro, M., Franco, N. G., Díaz-Pereira, E., ... & De Vente, J. (2020). Long-term effectiveness of sustainable land management practices to control runoff, soil erosion, and nutrient loss and the role of rainfall intensity in Mediterranean rainfed agroecosystems. Catena, 187, 104352. https://doi.org/10.1016/j.catena.2019.104352
- McGrath, D. A., Smith, C. K., Gholz, H. L., & Oliveira, F. D. A. (2001). Effects of land-use change on soil nutrient dynamics in Amazonia. Ecosystems, 4, 625-645. https://doi.org/10.1007/s10021-001-0033-0
- Meena, V. S., Mondal, T., Pandey, B. M., Mukherjee, A., Yadav, R. P., Choudhary, M., ... & Pattanayak, A. (2018). Land use changes: Strategies to improve soil carbon and nitrogen storage pattern in the mid-Himalaya ecosystem, India. Geoderma, 321, 69-78. https://doi.org/10.1016/j.geoderma.2018.02.002
- Mganga, K. Z., Rolando, J., Kalu, S., & Karhu, K. (2024). Microbial soil quality indicators depending on land use and soil type in a semi-arid dryland in Kenya. European Journal of Soil Biology, 121, 103626. https://doi.org/10.1016/j.ejsobi.2024.103626
- Miju, C., Kiflu, A., & Gizachew, S. (2025). Effects of land use/land cover change on soil physicochemical properties and soil carbon stock in Kochore district, southern Ethiopia. Arabian Journal of Geosciences, 18(2), 41. https://doi.org/10.1007/s12517-025-12181-w
- Nanganoa, L. T., Okolle, J. N., Missi, V., Tueche, J. R., Levai, L. D., & Njukeng, J. N. (2019). Impact of Different Land‐Use Systems on Soil Physicochemical Properties and Macrofauna Abundance in the Humid Tropics of Cameroon. Applied and Environmental Soil Science, 2019(1), 5701278. https://doi.org/10.1155/2019/5701278
- Olsen S.R., Cole C.V., Watanabe F.S. and Dean L.A. (1954). Estimation of Available Phosphorous in Soils by Extraction with Sodium Bicarbonate; U.S. Department of Agriculture: Washington, D.C., USDA Circ. 939.
- Page A.L., Miller R.H., and Keeney D.R.( 1982). Methods of Soil Analysis, part2, chemical and microbiological properties. American Society of Agronomy, Inc. Soil Science Society of Aamerica, Madison, WI. https://doi.org/10.2134/agronmonogr9.2.2ed.c33
- Poeplau, C., & Don, A. (2013). Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma, 192, 189-201. https://doi.org/10.1016/j.geoderma.2012.08.003
- Ramos, T. V., Santos, L. A. C., de Souza, W. G., de Souza, K. R., Lima, N. L., Guimaraes, L. E., ... & de Melo e Silva-Neto, C. (2018). Chemical attributes of Brazilian Cerrado soil under different management systems. Australian Journal of Crop Science, 12(3), 505-510. https://search.informit.org/doi/10.3316/informit.608172939903110
- Samie, F. , Yaghmaeian Mahabadi, N. , Abrishamkesh, S. and Maslahatjou, A. (2022). Impact of land use change on erodibility and soil quality indicators (case study: Sidasht, Guilan Province). Agricultural Engineering, 45(1), 57-78. (In Persian). https://doi.org/10.22055/agen.2022.39858.1630
- Silva-Sánchez, A., Soares, M., & Rousk, J. (2019). Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality. Soil Biology and Biochemistry, 134, 25-35. https://doi.org/10.1016/j.soilbio.2019.03.008
- Soil Survey Staff. 1996. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42.
- Solly, E. F., Weber, V., Zimmermann, S., Walthert, L., Hagedorn, F., & Schmidt, M. W. (2020). A critical evaluation of the relationship between the effective cation exchange capacity and soil organic carbon content in Swiss forest soils. Frontiers in Forests and Global Change, 3, 98. https://doi.org/10.3389/ffgc.2020.00098
- Sun, C., Liu, G., & Xue, S. (2016). Land-use conversion changes the multifractal features of particle-size distribution on the Loess Plateau of China. International Journal of Environmental Research and Public Health, 13(8), 785. https://doi.org/10.3390/ijerph13080785
- Taghipour, M. , Yaghmaeian Mahabadi, N. and Shabanpour, M. (2023). Assessment of soil quality indices using multivariate analysis in different land uses (case study: Tootkabon, Guilan province). Agricultural Engineering, 46(3), 251-271. https://doi.org/10.22055/agen.2023.44957.1684
- Tellen, V. A., & Yerima, B. P. (2018). Effects of land use change on soil physicochemical properties in selected areas in the North West region of Cameroon. Environmental systems research, 7(1), 1-29. https://doi.org/10.1186/s40068-018-0106-0
- Torres, J. L. R., Costa, D. D. D. A., Silveira, B. D. S., Vieira, D. M. D. S., & Lemes, E. M. (2020). Soil physical attributes in long-term soil management systems (Tillage and No-till). Journal of Agricultural Science, 12(4), 194. https://doi.org/10.3390/agronomy13040966
- Wang, B., Waters, C., Orgill, S., Gray, J., Cowie, A., Clark, A. and Li Liu, D., 2018. High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia. Science of the Total Environment, 630, pp.367-378. DOI: 1016/j.scitotenv.2018.02.204
- Walkley A. and Black I.A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37: 29-37.
- Xia, S., Song, Z., Yu, B., Fan, Y., Tony, V., Guo, L., ... & Wang, H. (2024). Land use changes and edaphic properties control contents and isotopic compositions of soil organic carbon and nitrogen in wetlands. Catena, 241, 108031. https://doi.org/10.1016/j.catena.2024.108031
- Yan, Y., Wang, C., Zhang, J., Sun, Y., Xu, X., Zhu, N., ... & Chen, J. (2022). Response of soil microbial biomass C, N, and P and microbial quotient to agriculture and agricultural abandonment in a meadow steppe of northeast China. Soil and Tillage Research, 223, 105475. https://doi.org/10.1016/j.still.2022.105475
- Yao, M., Shao, D., Lv, C., An, R., Gu, W., & Zhou, C. (2021). Evaluation of arable land suitability based on the suitability function-A case study of the Qinghai-Tibet Plateau. Science of The Total Environment, 787, 147414. https://doi.org/10.1016/j.scitotenv.2021.147414
- Yuan, J., Yao, Y., Guan, Y., Sadiq, M., Li, J., Liu, S., ... & Yan, L. (2024). Effects of land use patterns on soil properties and nitrous oxide flux on a semi-arid environmental conditions of Loess Plateau China. Global Ecology and Conservation, 51, e02899. https://doi.org/10.1016/j.gecco.2024.e02899
- Yuefeng, G., Fucang, Q., Yunfeng, Y. A. O., & Wei, Q. I. (2014). Effects of land use changes on soil organic carbon and soil microbial biomass carbon in low hills of North Yanshan Mountains. Range Management and Agroforestry, 35(1), 15-21.
- Zhang, W., Xu, Y., Gao, D., Wang, X., Liu, W., Deng, J., ... & Ren, G. (2019). Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China. Soil Biology and Biochemistry, 134, 1-14. https://doi.org/10.1016/j.soilbio.2019.03.017
- Zhu, Z., Chen, J., Hu, H., Zhou, M., Zhu, Y., Wu, C., ... & Wang, J. (2024). Soil quality evaluation of different land use modes in small watersheds in the hilly region of southern Jiangsu. Ecological Indicators, 160, 111895. https://doi.org/10.1016/j.ecolind.2024.111895
|