پارسایی مهر، خ.، دانشیار، م.، فرهومند، پ.، جانمحمدی، ح.، علیایی، م. و جوانمرد، آ. (1401). تأثیر افزودن سطوح مختلف اسیدآمینه والین در جیرههای غذایی کم پروتئین بر عملکرد، شاخصهای بیوشیمیایی خون و خصوصیات استخوان جوجههای گوشتی سویه راس-308 در دوره رشد. پژوهشهای تولیدات دامی، 13(37)، 32-39.
پارسایی مهر، خ.، دانشیار، م.، فرهومند، پ.، جانمحمدی، ح، و علیایی، م، (1400). تأثیر مقادیر مختلف اسیدآمینه والین در جیرههای کمپروتئین، بر ایمنی سلولی و همورال جوجههای گوشتی. آسیبشناسی درمانگاهی دامپزشکی، 15(58)، 129-141.
صادق زاده، س.، دانشیار م.، فرهومند، پ.، یزدیان، م، و هاشمی، س. م. (1400). اثر سطوح مختلف اسید آمینه لوسین بر عملکرد، خصوصیات وکیفیت لاشه و بیان ژنهای IGF-1 و انسولین در جوجههای گوشتی. مجله تحقیقات دامپزشکی، 76(3)، 359-371.
Adeva-Andany, M. M., López-Maside, L., Donapetry-García, C., Fernández-Fernández, C. and Sixto-Leal, C. (2017). Enzymes involved in branched-chain amino acid metabolism in humans. Amino acids, 49(6), 1005-1028.
Agostini, P. S., Santos, R. R., Khan, D. R., Siebert, D. and Van der Aar, P. (2019). The optimum valine: lysine ratios on performance and carcass traits of male broilers based on different regression approaches. Poultry science, 98(3), 1310-1320.
Allameh, S. and Toghyani, M. (2019). Effect of dietary valine supplementation to low protein diets on performance, intestinal morphology and immune responses in broiler chickens. Livestock Science, 229, 137-144.
Allen, N. K. and Baker, D. H. (1972). Quantitative efficacy of dietary isoleucine and valine for chick growth as influenced by variable quantities of excess dietary leucine. Poultry Science, 51(4), 1292-1298.
Amirdahri, S., Janmohammadi, H., Taghizadeh, A., Lambert, W., Soumeh, E. A. and Oliayi, M. (2020). Valine requirement of female Cobb broilers from 8 to 21 days of age. Journal of applied poultry research, 29(4), 775-785.
Awad, W., Ghareeb, K. and Böhm, J. (2008). Intestinal structure and function of broiler chickens on diets supplemented with a synbiotic containing Enterococcus faecium and oligosaccharides. International Journal of Molecular Sciences, 9(11), 2205-2216.
Aviagen (2021). Ross 308 and 708 parent stock nutrition specifications guide. https://en.aviagen.com/brands/ross/. Accessed Aug. 2021.
Bai, J., Greene, E., Li, W., Kidd, M. T. and Dridi, S. (2015). Branched‐chain amino acids modulate the expression of hepatic fatty acid metabolism‐related genes in female broiler chickens. Molecular nutrition & food research, 59(6), 1171-1181.
Berres, J., Vieira, S. L., Dozier Iii, W. A., Cortês, M. E. M., De Barros, R., Nogueira, E. T. and Kutschenko, M. (2010). Broiler responses to reduced-protein diets supplemented with valine, isoleucine, glycine, and glutamic acid. Journal of Applied Poultry Research, 19(1), 68-79.
Brosnan, J. T. and Brosnan, M. E. (2006). Branched-chain amino acids: enzyme and substrate regulation. The Journal of nutrition, 136(1), 207S-211S.
Calder, P. C. (2006). Branched-chain amino acids and immunity. The Journal of nutrition, 136(1), 288S-293S.
Chen, X., Zhang, Q. and Applegate, T. J. (2016). Impact of dietary branched chain amino acids concentration on broiler chicks during aflatoxicosis. Poultry science, 95(6), 1281-1289.
Cheroutre, H., Lambolez, F. and Mucida, D. (2011). The light and dark sides of intestinal intraepithelial lymphocytes. Nature Reviews Immunology, 11(7), 445-456.
Cobb-Vantress (2020c). Cobb 700 broiler performance and nutrition supplement guide. https://www.cobb-vantress.com/en_US/prod ucts. Accessed Aug. 2021
Corzo, A., Dozier, W. I., Kidd, M. T. and Hoehler, D. (2008). Impact of dietary isoleucine status on heavy-broiler production. International Journal of Poultry Science, 7 (6), 526-529
Erwan, E., Alimon, A. R., Sazili, A. Q. and Yaakub, H. (2008). Effect of varying levels of leucine and energy on performance and carcass characteristics of broiler chickens. International Journal of Poultry Science, 7, 696-699.
Hou, Y., Yin, Y. and Wu, G. (2015). Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans. Experimental Biology and Medicine, 240(8), 997-1007.
Kaab, H., Bain, M. M. and Eckersall, P. D. (2018). Acute phase proteins and stress markers in the immediate response to a combined vaccination against Newcastle disease and infectious bronchitis viruses in specific pathogen free (SPF) layer chicks. Poultry science, 97(2), 463-469.
Kamran, Z., Sarwar, M., Mahr-un-Nisa, Nadeem, M. A., Mushtaq, T., Ahmed, T. and Mushtaq, M. M. H. (2008). Effect of low levels of dietary protein on growth, protein utilisation and body composition of broiler chicks from one to twenty-six days of age. Avian Biology Research, 1(1), 19-25.
Kidd, M. T., Kerr, B. J., Allard, J. P., Rao, S. K. and Halley, J. T. (2000). Limiting amino acid responses in commercial broilers. Journal of Applied Poultry Research, 9(2), 223-233.
Kim, W. K., Singh, A. K., Wang, J. and Applegate, T. (2022). Functional role of branched chain amino acids in poultry: a review. Poultry science, 101(5), 101715.
Kop-Bozbay, C., Akdag, A., Atan, H. and Ocak, N. (2021). Response of broilers to supplementation of branched-chain amino acids blends with different valine contents in the starter period under summer conditions. Animal bioscience, 34(2), 295.
Laudadio, V., Dambrosio, A., Normanno, G., Khan, R. U., Naz, S., Rowghani, E. and Tufarelli, V. (2012). Effect of reducing dietary protein level on performance responses and some microbiological aspects of broiler chickens under summer environmental conditions. Avian Biology Research, 5(2), 88-92.
Liu, Q. W., Feng, J. H., Chao, Z., Chen, Y., Wei, L. M., Wang, F. and Zhang, M. H. (2016). The influences of ambient temperature and crude protein levels on performance and serum biochemical parameters in broilers. Journal of animal physiology and animal nutrition, 100(2), 301-308.
Miranda, D. J. A., Vieira, S. L., Favero, A., Angel, C. R., Stefanello, C. and Nogueira, E. T. (2015). Performance and meat production of broiler chickens fed diets formulated at different crude protein levels supplemented or not with L-valine and L-isoleucine. Animal Feed Science and Technology, 206, 39-47.
Monirujjaman, M. D. and Ferdouse, A. (2014). Metabolic and physiological roles of branched-chain amino acids. Advances in Molecular Biology, 2014.
Moura, C. S., Lollo, P. C. B., Morato, P. N., Risso, E. M. and Amaya-Farfan, J. (2017). Modulatory effects of arginine, glutamine and branched-chain amino acids on heat shock proteins, immunity and antioxidant response in exercised rats. Food & function, 8(9), 3228-3238.
Nascimento, G. R., Murakami, A. E., Ospina-Rojas, I. C., Diaz-Vargas, M., Picoli, K. P. and Garcia, R. G. (2016). Digestible valine requirements in low-protein diets for broilers chicks. Brazilian Journal of Poultry Science, 18, 381-386.
NRC (1994). National Research Council, & Subcommittee on Poultry Nutrition. Nutrient requirements of poultry: 1994. National Academies Press.
Ospina-Rojas, I. C., Murakami, A. E., do Amaral Duarte, C. R., Pozza, P. C., Rossi, R. M. and Gasparino, E. (2019). Performance, diameter of muscle fibers, and gene expression of mechanistic target of rapamycin in pectoralis major muscle of broilers supplemented with leucine and valine. Canadian journal of animal science, 99(1), 168-178.
Ospina-Rojas, I. C., Murakami, A. E., Duarte, C. R. A., Nascimento, G. R., Garcia, E. R. M., Sakamoto, M. I. and Nunes, R. V. (2017). Leucine and valine supplementation of low-protein diets for broiler chickens from 21 to 42 days of age. Poultry Science, 96(4), 914-922.
Potenca, A., Murakami, A. E., Ospina-Rojas, I. C. and Muller Fernandes, J. I. (2015). Digestible valine-to-lysine ratio in diets for broiler chickens. Revista mexicana de ciencias pecuarias, 6(1), 25-37.
Ren, M., Zhang, S. H., Zeng, X. F., Liu, H. and Qiao, S. Y. (2015). Branched-chain amino acids are beneficial to maintain growth performance and intestinal immune-related function in weaned piglets fed protein restricted diet. Asian-Australasian Journal of Animal Sciences, 28(12), 1742.
Shepherd, E. M. and Fairchild, B. D. (2010). Footpad dermatitis in poultry. Poultry science, 89(10), 2043-2051.
Thornton, S. A., Corzo, A., Pharr, G. T., Dozier Iii, W. A., Miles, D. M. and Kidd, M. T. (2006). Valine requirements for immune and growth responses in broilers from 3 to 6 weeks of age. British Poultry Science, 47(2), 190-199.
Wesney, E. and Tannock, G. W. (1979). Association of rat, pig, and fowl biotypes of lactobacilli with the stomach of gnotobiotic mice. Microbial ecology, 5, 35-42.
Widyaratne, G. P. and Drew, M. D. (2011). Effects of protein level and digestibility on the growth and carcass characteristics of broiler chickens1. Poultry Science, 90(3), 595-603.
Zhang, C., Jiao, S., Wang, Z. A. and Du, Y. (2018). Exploring effects of chitosan oligosaccharides on mice gut microbiota in in vitro fermentation and animal model. Frontiers in microbiology, 9, 405196.
Zhou, H., Yu, B., Gao, J., Htoo, J. K. and Chen, D. (2018). Regulation of intestinal health by branched‐chain amino acids. Animal Science Journal, 89(1), 3-11.