حاج خدادادی، ا. و عباسی، س. (1397). اثر مولتی آنزیم کمزایم بر صفات عملکردی، کیفیت تخممرغ و قابلیت هضم مواد مغذی در جیرههای رقیقشده مرغهای تخمگذار هایلاین W36 در اواخر دوره تولید. پژوهش های علوم دامی (دانش کشاورزی) 28(1)، 13-31.
AOAC, B. A. M. (2000). International. Official methods of analysis of AOAC International. 17th ed. Washington DC: AOAC International.
Apajalahti, J., Kettunen, A. and Graham, H. (2004). Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World's Poultry Science Journal, 60(2), 223-232.
Aviagen. (2018). Ross 308 parent stock: nutrition specifications. Accessed Apr. http://eu.aviagen.com/assets/Tech-Center/Ross_PS/Ross308-PS-NS-2016-EN.pdf.
Barasch, I. B. and Grimes, J. L. (2021). The effect of a heat-stable xylanase on digesta viscosity, apparent metabolizable energy and growth performance of broiler chicks fed a wheat-based diet. Poultry Science, 100(9), 275-287.
Bougouin, A., Appuhamy, J. A. D. R. N., Kebreab, E., Dijkstra, J., Kwakkel, R. P. and France, J. (2014). Effects of phytase supplementation on phosphorus retention in broilers and layers: A meta-analysis. Poultry Science, 93(8), 1981-1992.
Classen, H.L. (2013). Response of broiler chickens to dietary energy and its relationship to amino acid nutrition. Australia, 17 February, 107–114.
Ebrahimnezhad, Y., Shivazad, M., Taherkhani, R. and Nazeradl, K. (2008). Effect of EDTA Supplementation on Phytate Phosphorus Utilization and Efficiency of Microbial Phytase in Laying Hens. EdItorIal Board, 25, 76-82.
Engberg, R. M., Hedemann, M. S., Steenfeldt, S. and Jensen, B. B. (2004). Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poultry Science, 83(6), 925-938.
Gonzalez-Ortiz, G., Sola-Oriol, D., Martinez-Mora, M., Perez, J. F. and Bedford, M. R. (2017). Response of broiler chickens fed wheat-based diets to xylanase supplementation. Poultry Science, 96(8), 2776-2785.
Haugh, R. (1937). The haugh unit for measuring egg quality. United States Egg and Poultry Magazine, 43:522–555.
He, X., Yu, B., He, J., Huang, Z., Mao, X., Zheng, P. and Chen, D. (2020). Effects of xylanase on growth performance, nutrients digestibility and intestinal health in weaned piglets. Livestock Science, 233(5), 940-956.
Hussein, E. O. S., Suliman, G. M., Alowaimer, A. N., Ahmed, S. H., Abd El-Hack, M. E., Taha, A. E. and Swelum, A. A. (2020). Growth, carcass characteristics, and meat quality of broilers fed a low-energy diet supplemented with a multienzyme preparation. Poultry Science, 99(4), 1988-1994.
Jasek, A., Latham, R. E., Mañón, A., Llamas-Moya, S., Adhikari, R., Poureslami, R. and Lee, J. T. (2018). Impact of a multicarbohydrase containing α-galactosidase and xylanase on ileal digestible energy, crude protein digestibility, and ileal amino acid digestibility in broiler chickens. Poultry Science, 97(9), 3149-3155.
Jozefiak, D., Rutkowski, A., Kaczmarek, S., Jensen, B. B., Engberg, R. M. and Højberg, O. (2010). Effect of β-glucanase and xylanase supplementation of barley-and rye-based diets on caecal microbiota of broiler chickens. British Poultry Science, 51(4), 546-557.
Khan, S. H., Sardar, R. and Siddique, B. (2006). Influence of enzymes on performance of broilers fed sunflower-corn based diets. Pakistan Veterinary Journal, 26(3):109-114.
Kim, M. C., Kim, J. H., Pitargue, F. M., Choi, H. S. and Kil, D. Y. (2017). Effect of dietary β-mannanase on productive performance, egg quality, and utilization of dietary energy and nutrients in aged laying hens raised under hot climatic conditions. Asian-Australasian Journal of Animal Sciences, 30(10), 1450-1463.
Mingan, C. (2001). Alternatives to in-feed antibiotics in monogastric animal industry. ASA Technical Bulletin. AN30, 1-6.
Mirzaie, S., Zaghari, M., Aminzadeh, S., Shivazad, M. and Mateos, G. G. (2012). Effects of wheat inclusion and xylanase supplementation of the diet on productive performance, nutrient retention, and endogenous intestinal enzyme activity of laying hens. Poultry Science, 91(2), 413-425.
Moss, A. F., Khoddami, A., Chrystal, P. V., Sorbara, J. O. B., Cowieson, A. J., Selle, P. H. and Liu, S. Y. (2020). Starch digestibility and energy utilisation of maize-and wheat-based diets is superior to sorghum-based diets in broiler chickens offered diets supplemented with phytase and xylanase. Animal Feed Science and Technology, 264(7), 475-489.
Mussini, F. J., Coto, C. A., Goodgame, S. D., Lu, C., Karimi, A. J., Lee, J. H. and Waldroup, P. W. (2011). Effect of a ß-Mannanase on nutrient digestibility in corn-soybean meal diets for broiler chicks. International Journal of Poultry Science, 10(10), 774-777.
Olukosi, O. A., González-Ortiz, G., Whitfield, H. and Bedford, M. R. (2020). Comparative aspects of phytase and xylanase effects on performance, mineral digestibility, and ileal phytate degradation in broilers and turkeys. Poultry Science, 99(3), 1528-1539.
Osunbami, O. T., Walk, C. L. and Adeola, O. (2024). Digestible calcium equivalency of phytase and nutrient utilization of broiler chickens fed graded levels of limestone or phytase during the starter phase. Poultry Science, 103(2), 360-374.
Pang, Y. and Applegate, T. J. (2007). Effects of dietary copper supplementation and copper source on digesta pH, calcium, zinc, and copper complex size in the gastrointestinal tract of the broiler chicken. Poultry Science, 86(3), 531-537.
Peng, Y. L., Guo, Y. M. and Yuan, J. M. (2003). Effects of microbial phytase replacing partial inorganic phosphorus supplementation and xylanase on the growth performance and nutrient digestibility in broilers fed wheat-based diets. Asian-australasian Journal of Animal Sciences, 16(2), 239-247.
Perney, K. M., Cantor, A. H., Straw, M. L. and Herkelman, K. L. (1993). The effect of dietary phytase on growth performance and phosphorus utilization of broiler chicks. Poultry Science, 72(11), 2106-2114.
Santos Jr, A. A., Ferket, P. R., Grimes, J. L. and Edens, F. W. (2004). Dietary supplementation of endoxylanases and phospholipase for turkeys fed wheat-based rations. International Journal of Poultry Science, 3(1), 20-32.
SAS. (2009). STAT User’s Guide, Version 9.2. SAS Inst. Inc., Cary, NC.
Scott, T. A. and Hall, J. W. (1998). Using acid insoluble ash marker ratios (diet: digesta) to predict digestibility of wheat and barley metabolizable energy and nitrogen retention in broiler chicks. Poultry Science, 77(5), 674-679.
Selle, P. H., Ravindran, V., Ravindran, G., Pittolo, P. H. and Bryden, W. L. (2003). Influence of phytase and xylanase supplementation on growth performance and nutrient utilisation of broilers offered wheat-based diets. Asian-Australasian Journal of Animal Sciences, 16(3), 394-402.
Sharmila, A., Kasim, A., Noor, H. M., Jahromi, M. F. and Samsudin, A. A. (2015). Quantitative real-time PCR analysis of the caecal bacteria population of broiler chickens fed with corn-soy diet containing 20% of palm kernel meal with or without enzyme supplementation. Journal of Animal and Poultry Production, 4(8), 1–9.
Short, F. J., Gorton, P., Wiseman, J. and Boorman, K. N. (1996). Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Animal Feed Science and Technology, 59(4), 215-221.
Silva, S. S. P., & Smithard, R. R. (2002). Effect of enzyme supplementation of a rye-based diet on xylanase activity in the small intestine of broilers, on intestinal crypt cell proliferation and on nutrient digestibility and growth performance of the birds. British Poultry Science, 43(2), 274-282.
Smeets, N., Nuyens, F., Van Campenhout, L., Delezie, E. and Niewold, T. A. (2018). Interactions between the concentration of non-starch polysaccharides in wheat and the addition of an enzyme mixture in a broiler digestibility and performance trial. Poultry Science, 97(6), 2064-2070.
Smits, C. H., Veldman, A., Verstegen, M. W. and Beynen, A. C. (1997). Dietary carboxymethylcellulose with high instead of low viscosity reduces macronutrient digestion in broiler chickens. The Journal of Nutrition, 127(3), 483-487.
Tabook, N. M., Kadim, I. T., Mahgoub, O. and Al-Marzooqi, W. (2006). The effect of date fibre supplemented with an exogenous enzyme on the performance and meat quality of broiler chickens. British Poultry Science, 47(1), 73-82.
Wickramasuriya, S., Kim, E., Shin, T. K., Cho, H. M., Kim, B., Patterson, R. and Heo, J. M. (2019). Multi-carbohydrase addition into a corn-soybean meal diet containing wheat and wheat by products to improve growth performance and nutrient digestibility of broiler chickens. Journal of Applied Poultry Research, 28(2), 399-409.
Yaghobfar, A. and Kalantar, M. (2017). Effect of non-starch polysaccharide (NSP) of wheat and barley supplemented with exogenous enzyme blend on growth performance, gut microbial, pancreatic enzyme activities, expression of glucose transporter (SGLT1) and mucin producer (MUC2) genes of broiler chickens. Brazilian Journal of Poultry Science, 19, 629-638.
Yaqoob, M. U., Yousaf, M., Iftikhar, M., Hassan, S., Wang, G., Imran, S. and Wang, M. (2022). Effect of multi-enzymes supplementation on growth performance, meat quality, ileal digestibility, digestive enzyme activity and caecal microbiota in broilers fed low-metabolizable energy diet. Animal Bioscience, 35(7), 1059-1074.
Yu, B., Wu, S. T., Liu, C. C., Gauthier, R. and Chiou, P. W. (2007). Effects of enzyme inclusion in a maize–soybean diet on broiler performance. Animal Feed Science and Technology, 134(3-4), 283-294.
Żyła, K., Koreleski, J., Świątkiewicz, S., Ledoux, D. R. and Piironen, J. (2001). Influence of supplemental enzymes on the performance and phosphorus excretion of broilers fed wheat-based diets to 6 weeks of age. Animal Feed Science and Technology, 89(1-2), 113-118.