| Thymus vulgaris L., a member of the Lamiaceae family, is one of the most widely used medicinal and aromatic plants. This experiment aimed to investigate the effects of CO2 enrichment at 350, 700, and 1000 mg/L (C1, C2, and C3) combined with supplementary lighting photoperiods of 12, 16, and 20 hours (L1, L2, and L3) on several attributes of T. vulgaris. Measurements included fresh and dry weights of plant organs, photosynthetic pigments, essential oil quantity and composition, as well as the activity of catalase, ascorbate peroxidase, and polyphenol oxidase. The antioxidant capacity, along with the assessment of phenolic compounds and flavonoid content, was also conducted. The L3C3 treatment significantly improved several parameters, including fresh weight, dry weight, plant height, chlorophyll a, chlorophyll b, essential oil content, carotenoids, phenolic compounds, flavonoids, and antioxidant activity. These showed respective increases of 110%, 276%, 82%, 63%, 63%, 160%, 45%, 68%, 13%, and 45%. Additionally, the L3C1 treatment significantly enhanced peroxidase activity by a factor of 108%. Furthermore, under the L3C1 treatment, catalase, superoxide dismutase, and polyphenol oxidase activities increased by 37%, 50%, and 73%, respectively. |
- Dong J., Gruda N., Li X., Tang Y., Zhang P and Duan Z. Sustainable vegetable production under changing climate: The impact of elevated CO2 on yield of vegetables and the interactions with environments‑A review. Journal of Cleaner Production. 2020;253:119920. DOI: 10.1016/j.jclepro.2019.119920.
- Dong J., Gruda N., Lam S.K., Li X., Duan Z. Effects of Elevated CO₂ on Nutritional Quality of Vegetables: A Review. Frontiers in Plant Science. 2018; 9:924. DOI: 10.3389/fpls.2018.00924.
- Wang S.Y., Bunce J.A., Maas J.L. Elevated carbon dioxide increases contents of antioxidant compounds in field grown strawberries. Journal of Agricultural and Food Chemistry. 2003; 51(15): 4315–4320. DOI: 10.1021/jf021172d.
- Fukuda A., Sato K., Fujimori C., Yamashita T., Takeuchi A., Ohuchi H., Umatani C., Kanda S. Direct photoreception by pituitary endocrine cells regulates hormone release and pigmentation. Science. 2025 3;387(6729):43-8. DOI: 10.1126/science.adj9687
- Hernández K.V., Moreno‑Romero J., Hernández de la Torre M., Pérez Manríquez C., Ríos Leal D., Martínez‑Garcia J.F. Effect of light intensity on steviol glycosides production in leaves of Stevia rebaudiana plants. Phytochemistry. 2022 Feb;194:113027. DOI:10.1016/j.phytochem.2021.113027
- Song J., Chen Z., Zhang A., Wang M., Jahan M.S., Wen Y., Liu X. The Positive Effects of Increased Light Intensity on Growth and Photosynthetic Performance of Tomato Seedlings in Relation to Night Temperature Level. Agronomy. 2022;12(2):343. DOI:10.3390/agronomy12020343
- Jackson S.D. Plant responses to photoperiod. New Phytol. 2009;181(3):517‑531. DOI:10.1111/j.1469-8137.2008.02681.x
- Hernández K.V., Moreno‑Romero J., Hernández de la Torre M., Pérez Manríquez C., Ríos Leal D., Martínez‑Garcia J.F. Effect of light intensity on steviol glycosides production in leaves of Stevia rebaudiana plants. Phytochemistry. 2022 Feb;194:113027. DOI:10.1016/j.phytochem.2021.113027
- Chalker‑Scott L. Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol. 1999;70(1):1–9. DOI:10.1111/j.1751-1097.1999.tb01944.x
- Zhou B., Feng X., Huang W‑H., Liu Q., Ibrahim S.A., Liu Y., et al. Effects of light intensity on the biosynthesis of glucosinolate in Chinese cabbage plantlets. Scientia Horticulturae. 2023;316:112036. DOI:10.1016/j.scienta.2023.112036
- Winkel‑Shirley B. Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology. 2002;5(3):218–223. DOI:10.1016/S1369-5266(02)00256‑X
- Heller W., Forkmann G. Biosynthesis of flavonoids, in The Flavonoids Advances in Research since 1986. 2017;Routledge. 499-535.
- Cheng Y., Xiang N., Cheng X., Chen H., Guo X. Effect of photoperiod on polyphenol biosynthesis and cellular antioxidant capacity in mung bean (Vigna radiata) sprouts. Food Research International. 2022;159:111626. DOI:10.1016/j.foodres.2022.111626
- Fayezizadeh M.R., Ansari N.A., Sourestani M.M., Hasanuzzaman M. Variations in photoperiods and their impact on yield, photosynthesis and secondary metabolite production in basil microgreens. BMC Plant Biology. 2024;26;24(1):712. DOI:10.1186/s12870-024-05448-z
- Carvalho L.C., Grassi L.M., Braga G.D., Castro I.T., Barros R.P., Moreno D.A. Effect of photoperiod on flavonoid pathway activity in sweet potato (Ipomoea batatas L.) leaves. Food Chemistry. 2009 Aug;116(3):384–390. DOI:10.1016/j.foodchem.2009.05.005.
- Kumar A., Singh N., Kaur A., Joshi R., et al. Sneak peek into the chlorophyll content, antioxidant activity, targeted and non targeted UHPLC QTOF LC/MS metabolomic fingerprints of pulse microgreens grown under different photoperiod regimes. Food Bioscience. 2023;52:102506. DOI:10.1016/j.fbio.2023.102506.
- Grant N.P. Exploring the natural variation of photosynthesis and abiotic stress in wheat varieties and reduced height mutants. Washington State University. 2020.
- Adams S., Langton F. Photoperiod and plant growth: a review. The Journal of Horticultural Science and Biotechnology. 2005; 80(1): 2-10.
- Adams S.R., Langton F.A. Photoperiod and plant growth: a review. The Journal of Horticultural Science and Biotechnology. 2005;80(1):2–10. DOI:10.1080/14620316.2005.11511882
- Shibaeva T.G., Sherudilo E.G., Rubaeva A.A., Titov A.F. Continuous LED Lighting Enhances Yield and Nutritional Value of Four Genotypes of Brassicaceae Microgreens. Plants. 2022;11(2):176. DOI:10.3390/plants11020176
- Arnon D.I. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiology. 1949;24(1):1–15. DOI:10.1104/pp.24.1.1
- Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126. DOI:10.1016/S0076-6879(84)05016-3.
- Nakano Y., Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology. 1981; 22(5): 867-880.
- Mayer A.M., Harel E., Shaul R.B. Assay of catechol oxidase – a critical comparison of methods. Phytochemistry. 1966;5(4):783–789. DOI:10.1016/S0031-9422(00)83660-2
- Brand‑Williams W., Cuvelier M.E., Berset C. Use of a free radical method to evaluate antioxidant activity. LWT- Journal of Food Science and Technology. 1995;28(1):25–30. DOI:10.1016/S0023-6438(95)80008-5
- Singleton, V.L., Rossi J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 1965.;16(3): 144-158.
- Chang C.-C., et al. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and Drug Analysis. 2002;34, 731-732.
- Song J., Huang H., Song S., Zhang Y., Su W., Liu H. Effects of photoperiod interacted with nutrient solution concentration on nutritional quality and antioxidant and mineral content in lettuce. Agronomy. 2020;10(7):920. DOI:10.3390/agronomy10070920
- Shimomura M., Yoshida H., Fujiuchi N., Ariizumi T., Ezura H., Fukuda N. Continuous blue lighting and elevated carbon dioxide concentration rapidly increase chlorogenic acid content in young lettuce plants. Scientia Horticulturae. 2020;272:109550. DOI:10.1016/j.scienta.2020.109550
- Thompson M., Gamage D., Hirotsu N., Martin A., Seneweera S. Effects of elevated carbon dioxide on photosynthesis and carbon partitioning: a perspective on root sugar sensing and hormonal crosstalk. Frontiers in Physiology. 2017;8:578. DOI:10.3389/fphys.2017.00578
- Bowes G. Facing the inevitable: plants and increasing atmospheric CO2. Annual Review of Plant Biology. 1993; 44:309–332. https://DOI.org/10.1146/annurev.pp.44.060193.001521
- Long S.P., Drake B.G. Effect of the long‑term elevation of CO₂ concentration in the field on the quantum yield of photosynthesis of the C₃ sedge Scirpus olneyi. Plant Physiology. 1991;96(1):221–226. DOI:10.1104/pp.96.1.221
- Fierro A., Tremblay N., Gosselin A. Supplemental carbon dioxide and light improved tomato and pepper seedling growth and yield. Hort Science. 1994;29:152-154.
- Hosseinzadeh M., Aliniaeifard S., Shomali A., Didaran F. Interaction of light intensity and CO₂ concentration alters biomass partitioning in chrysanthemum. Journal of Horticultural Research. 2021;29(2):45–56. DOI:10.2478/johr-2021-0015
- Huber B.M., Louws F.J., Hernández R. Impact of different daily light integrals and carbon dioxide concentrations on the growth, morphology, and production efficiency of tomato seedlings. Frontiers in Plant Science. 2021;12:615853. DOI:10.3389/fpls.2021.615853
- Guo J.M., Jermyn W.A., Turnbull MH. Diurnal and seasonal photosynthesis in two asparagus cultivars with contrasting yield. Crop Science. 2002;42(2):399–405. DOI:10.2135/cropsci2002.3990
- Hao X., Papadopoulos A.P., Brainard G.C., Bugbee B. Effects of supplemental lighting and cover materials on growth, photosynthesis, biomass partitioning, early yield and quality of greenhouse cucumber (Cucumis sativus L. cv. Flamingo). Scientia Horticulturae. 1999;80(1–2):1–18. DOI:10.1016/S0304-4238(98)00217-9
- Sage R.F., Sharkey T.D., Seemann J.R. Acclimation of photosynthesis to elevated CO₂ in five C₃ species. Plant Physiology. 1989;89(2):590–596. DOI:10.1104/pp.89.2.590
- Loladze I., Nolan J.M., Ziska L.H., Knobbe A.R. Rising atmospheric CO₂ lowers concentrations of plant carotenoids essential to human health: a meta‑analysis. Molecular Nutrition & Food Research. 2019;63(15):e1801047. DOI:10.1002/mnfr.201801047
- Liebelt D.J., Jordan J.T., Doherty C.J. Only a matter of time: the impact of daily and seasonal rhythms on phytochemicals. Phytochemistry Reviews. 2019;18(6):1409–1433. DOI:10.1007/s11101-019-09617-z
- Booker F.L. Influence of carbon dioxide enrichment, ozone and nitrogen fertilization on cotton (Gossypium hirsutum L.) leaf and root composition. Plant, Cell & Environment. 2000;23(6):573–583. DOI:10.1046/j.1365-3040.2000.00576.x
- Zhan L., Hu J., Ai Z., Pang L., Li Y., Zhu M. Light exposure during storage preserving soluble sugar and l‑ascorbic acid content of minimally processed romaine lettuce (Lactuca sativa L. var. longifolia). Food Chemistry. 2013;136(1):273–278. DOI:10.1016/j.foodchem.2012.07.123
- Ceunen S., Geuns J.M.C. Glucose, sucrose, and steviol glycoside accumulation in Stevia rebaudiana grown under different photoperiods. Biologia Plantarum. 2013;57(2):390–394. DOI:10.1007/s10535-012-0289-6
- Shekari G., Javanmardi J. Effects of foliar application of pure amino acid and amino acid containing fertilizer on broccoli (Brassica oleracea L. var. italica) transplants. Advances in Crop Science and Technology. 2017;5(3):280. DOI:10.4172/2329-8863.1000280
|