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Abstract: 16 

Mumps virus, a neurotropic member of paramyxoviridae, causes mumps disease. Since the 1960s, 17 

when the first live-attenuated vaccine against the mumps virus was developed, the mumps 18 

outbreaks have dramatically decreased. Monkey-based neurovirulence test has been developed and 19 

has been used to assess the safety of the attenuated mumps virus strains. However, laboratory and 20 

clinical findings have suggested that the monkey-based test may not necessarily reflect the 21 

neurovirulence behavior of the Mumps virus when administrated to the vaccinees. A neonatal rat-22 

based MuV neurovirulence safety test has been developed and recommended by reference 23 

institutions in recent years. This test in Lewis rats was first introduced in 1998. This study aimed 24 

to evaluate the suitability of neonatal Sprague-Dawley rats for the neurovirulence test of an Iranian 25 

Mumps virus vaccine strain, RS-12. One-day-old Sprague-Dawley newborn rats were 26 
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intracranially injected with MRC-5 cell supernatant (assigned as “C” for control group), the RS-27 

12 attenuated strain (assigned as “V” for vaccine group), and RS-12 wild-type strain (assigned as 28 

“W” for wild-type group) respectively. The animals were observed for 30 days post-injection 29 

regarding to the weight gain, viral titer in the brain tissue and appearance of hydrocephalus in the 30 

brain sections. The mean of weight gain in groups C and W was the highest and lowest 31 

respectively. Regression analysis of Log weight values revealed a significant difference between 32 

group C and group W. A significant difference between group V and group W was seen. There 33 

was no significant difference between the weight gain of group C and group V. No Mumps viruses 34 

were detected in the homogenized brain samples of group C, and in groups V and W, the viral 35 

titers showed a continuous decrease during the observation period. In the microscopic view of 36 

brain sections, the hydrocephalus started to form on day 15 post-injection and reached the highest 37 

extent on day 30th. On day 30 post-injection, the hydrocephalus area was determined as a maximum 38 

of 1%, 5%, and 10% for the C, V and W groups respectively. This study has introduced the 39 

newborn Sprague-Dawley rat model capable of demonstrating the neurovirulence potential of 40 

mumps viruses in vaccinees and distinguishing between wild-type and attenuated RS-12 strains. 41 

Further experiments are needed for optimization and validation of the test procedures. 42 

 43 
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1. Introduction: 46 

Mumps is a highly contagious, vaccine-preventable disease caused by a paramyxovirus (1). The 47 

root of Mumps is obscure, but it is probably associated with an old English verb that means to grin, 48 

to grimace, or to mumble (2). The mumps virus (MuV) circulates between humans by direct 49 

contact through respiratory droplets and contaminated fomites (1). The disease occurs in 33% of 50 

unvaccinated people with no clinical signs (3). Non-specific symptoms such as anorexia, malaise, 51 

headache, and fever may occur, but the specific symptom is swelling of parotid glands. Less 52 

common consequences are oophoritis, orchitis, mastitis, and pancreatitis. More serious 53 

consequences of infection are aseptic meningitis and encephalitis, which are considered rare 54 

complications (1). In 40-50% of cases, particularly in children under five years old, mumps 55 

infection is associated with non-specific symptoms, particularly respiratory signs. Mumps 56 

infection is not the only causative agent of parotitis (4, 5). Immunity following natural mumps 57 
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infection is generally long lasting; however, re-infection may occur. In 75% of vaccinated 58 

individuals, mumps disease may occur with no clinical signs (1). 59 

1.1. Infectious agent: 60 

MuV has a non-segmented negative-sense RNA genome incorporated in an enveloped 61 

pleomorphic particle. MuV is classified in the genus Orthorubulavirus of the 62 

family Paramyxoviridae (1). MuV has only one serotype, but based on the nucleotide sequence of 63 

Small Hydrophobic (SH) and haemagglutinin-neuraminidase (HN) genes are classified into 12 64 

genotypes (6, 7). The genome encodes seven proteins including nucleocapsid (N), phosphor (P), 65 

matrix (M), fusion (F), small hydrophobic (SH), hemagglutinin-neuraminidase (HN), and large 66 

(L) proteins (6). Many cell types express MuV receptors, so the virus can enter into many cell 67 

types. However, Vero (African green monkey kidney cell) is widely used for virus isolation and 68 

propagation in laboratories (2). Although humans are the only natural hosts of MuV, various 69 

species such as monkeys, hamsters, mice, rats, and chicken embryos are susceptible to MuV 70 

infection (2). A newborn-rat model has been investigated for MuV neurovirulence in the last two 71 

decades, capable of use in preclinical neurotoxicology testing (for example in the assessment of 72 

vaccine safety) and to study the molecular basis of viral neurovirulence (2, 8). 73 

1.2. Mumps vaccine history: 74 

In 1934, a virus was identified as the etiological agent of mumps. MuV was first cultivated in 75 

chicken embryos by Habel and Enders in 1945. As the result of the successful cultivation of MuV 76 

in chicken embryos and cell cultures, an inactivated vaccine was developed in 1946 and tested in 77 

humans in 1951, but no longer administered because of the short period of immunity following 78 

vaccination. The first live attenuated vaccine was developed in the United States in the 1960s (9). 79 

Since then, worldwide administration of live-attenuated mumps vaccines has resulted in effective 80 

control and a dramatic decrease in mumps outbreaks (8).  Inadequate cross-protection among MuV 81 

strains, when the formulated strain in the administered mumps vaccine is not from the same 82 

genotype of circulating MuV, could play a key role in the failure of global elimination of mumps 83 

(8).  84 

 85 

1.3. Neurovirulence of MuV and the safety of mumps vaccines: 86 
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As a neurotropic and neurovirulent virus, MuV is capable of infecting the central nervous system 87 

in a proportion of mumps cases (8). All currently in-use mumps vaccines contain live-attenuated 88 

viruses (2), so it is essential to make sure about the safety of mumps vaccines (8). Mumps vaccine 89 

strains such as Jeryl Lynn, Leningrad-3, L-Zagreb, Urabe, etc. have been developed and certified 90 

for vaccine production during the last decades (9). Although it is rare, it has been reported that 91 

some vaccine strains such as (Leningrad and Urabe strains) may be capable of shedding from 92 

vaccinees and infecting unvaccinated or vaccinated individuals (10, 11). Therefore, to evaluate the 93 

neurovirulence and to assure the safety of mumps vaccines, neurovirulence tests should be 94 

carefully performed before starting clinical studies (8). 95 

Mumps vaccines contain different live-attenuated strains, varying in immunogenicity, safety, 96 

efficacy, and adverse reaction profiles (12). Several studies have been conducted to evaluate these 97 

characteristics (9, 13, 14, 15, 16), providing the necessary information for national regulatory 98 

authorities to decide whether to manufacture and administer a mumps vaccine using a specific 99 

mumps virus strain or not (17).  100 

The most common animal model for studying the neurovirulence of MuV is Rhesus Monkeys. 101 

However, it is well-documented that those mumps vaccines with acceptable safety profiles in the 102 

monkey models, may still cause meningitis and encephalitis in clinical use (8), and the 103 

neurovirulence test in a monkey model may not necessarily reflect the exact behavior of MuV in 104 

humans (18). Moreover, many authoritative organizations have put the suitability of monkey 105 

models for the evaluation of MuV neurovirulence under question (8). A neonatal rat-based MuV 106 

neurovirulence safety test has been developed and has been recommended by reference institutions 107 

in recent years. This model is much more convenient than monkey-based tests and can distinguish 108 

attenuated MuV strains from wild-type ones (8). The neonatal rat-based MuV neurovirulence test 109 

in Lewis rats was first introduced by Steven A. Rubin (8, 19) and gradually improved (20). 110 

This study aimed to evaluate the suitability of neonatal Sprague-Dawley rats for the neurovirulence 111 

test of an Iranian MuV vaccine strain, RS-12. This was the first study on a neonatal rat-based MuV 112 

neurovirulence test in Iran. 113 

 114 

2. Material and methods: 115 

2.1. MuV, RS-12 strain: Both wild-type and attenuated strains were provided by the Human Viral 116 

Vaccines Department, Razi Vaccine & Serum Research Institute. Historically, the virus was 117 
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isolated from a clinically-approved mumps patient. The wild-type virus has adapted to the Human 118 

Diploid Cell line (MRC-5), following isolation and primary passages in Vero cells. The virus has 119 

attenuated using serial passages in MRC-5 cells (21). 120 

2.2. Newborn rats: Sprague-Dawley newborn rats were provided by the Animal Husbandry 121 

Department, Razi Vaccine & Serum Research Institute. 122 

2.3. Cell substrates: MRC-5 and Vero cells were provided by the Human Viral Vaccines 123 

Department, Razi Vaccine & Serum Research Institute. 124 

2.4. Group assignments: Three groups of animals were assigned as C, V, and W. Group C (for 125 

control) contained 3 mothers and 26 newborn rats (C1-C3). Group V (for Vaccine strain-injected) 126 

contained 3 mothers and 37 neonatal rats (V1-V3). Group W (for wild-type-virus injected) 127 

contained 3 mothers and 34 neonatal rats (W1-W3). Each mother along with her newborn rats was 128 

kept in a dedicated cage. 129 

2.5. Injection materials: One-day-old newborn rats in Group C, Group V, and Group W were 130 

injected with 20 microliters of MRC-5 cell supernatant, 20 microliters of the RS-12 attenuated 131 

(vaccine) strain sample containing 103.5 viruses per ml, and RS-12 wild-type strain sample 132 

containing 103.5 viruses per ml respectively.  133 

2.6. Injection method: Sterile Hamilton syringes were used. The neonatal rats were gently fixed 134 

and subjected to intracranial injection in the left hemisphere, 2-3 mm in depth, at a location 135 

between the lambda and bregma regions. The injections were carried out under mild anesthesia. 136 

2.7. Observation and sampling: The animals were observed for 30 days post-injection. All 137 

animals were weighed daily at 11:00 a.m, including a day before injection. Any unusual 138 

observations including deaths were recorded. On days 3, 6, 9, 12, 15, 19, 25, and 30 post-injection, 139 

an animal from each group was selected randomly. Following a deep anesthesia, the brains were 140 

carefully removed, a sagittal cut was made at the midline. The right hemispheres were 141 

homogenized in 1.5 ml DMEM (cell culture medium) and after centrifugation, the supernatants 142 

were frozen at -40°C for further virus titration. The left hemispheres were fixed in formaldehyde 143 

solution for further pathological evaluation. 144 

2.8. Virus titration: The titer of MuV in the homogenized brain samples was determined using 145 

the Kurbur formula.  146 
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2.9. Pathological evaluation: Formalin-fixed, paraffin-embedded blocks were sectioned and 147 

stained using the Hematoxylin-Eosin method. The sections were microscopically observed for any 148 

pathological signs, particularly formation and the extent of hydrocephalus in the lateral ventricle. 149 

 150 

3. Results: 151 

The weight gain pattern, appearance of hydrocephalus in lateral ventricles, and the viral titer in the 152 

homogenized brain samples were followed as the main criteria of the neurovirulence test in a 153 

newborn rat-based model, according to the references.  154 

The mean of weight gain in the C, V, and W groups showed a continuous increase during the 30 155 

days of the observation period. The mean of weight gain in groups C and W was the highest and 156 

lowest, respectively. Despite group C, that the weight gain was still increasing at the end of the 157 

observation period, groups V and W had begun a stationary phase on day 28 post-injection (Figure 158 

1). Regression analysis of Log weight values revealed a significant difference between group C 159 

and group W. There was also a significant difference between the group V and group W. There 160 

was no significant difference between the group C and group V. 161 

Figure 1. Mean of weight gain of injected animals 162 
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 163 

 164 

The titer of MuV in homogenized brain samples is summarized in Table 1. Each sample was tested 165 

3 times and the mean of calculated titers was considered as the viral titer. No MuV was detected 166 

in the samples of group C. In groups V and W, the viral titers showed a continuous decrease during 167 

the observation period. 168 

 169 

Table 1. Viral titer in the homogenized brain tissues. 170 

Mean of viral titer in the homogenized brain samples (-log CCID50/ml)  
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30 25 19 15 12 9 6 3 Day post-injection 

ND ND ND ND ND ND ND ND Group C 

ND 2.50 2.75 3.00 3.08 3.00 3.17 3.25 Group V 

ND ND 3.13 3.75 3.75 3.42 3.45 3.50 Group W 

Titer of mumps virus during the 30-days observation period. Mean of three titrations are inserted as final 171 
titers. C: control, V: vaccine-injected group, W: wild-type-injected group, ND: not detected. 172 

 173 

Sagittal sections were evaluated for the appearance of pathological signs, particularly 174 

hydrocephalus in the lateral ventricle. The hydrocephalus started to form on day 15 post-injection 175 

and reached to the highest extent on the day 30. To make the extent of hydrocephalus measurable, 176 

the area of the formed cavity in the lateral ventricle was compared against the whole brain section 177 

(excluding the conus and the optic lobe). At the end of day 30 post-injection, the hydrocephalus 178 

area was determined as a maximum of 1%, 5%, and 10% for the C, V and W groups respectively 179 

(Figures 2, 3).  180 

Figure 2. Microscopic view of sagittal brain sections at day 25 post-injection.  181 

   

Paraffin-embedded, H&E stained brain sections. Formation of hydrocephalus are seen as hollow area in 182 
the sections. Left: control group (injected with supernatant of MRC-5 cells), Middle: group V (injected 183 
with attenuated RS-12 mumps virus, and Right: group W (injected with wild-type RS-12 mumps virus). 184 

 185 

Figure 3. Microscopic view of sagittal brain sections at day 30 post-injection.  186 

   

Paraffin-embedded, H&E stained brain sections at the end of observation period. Formation of 187 
hydrocephalus are seen as hollow area in the sections. Left: control group (injected with supernatant of 188 
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MRC-5 cells), Middle: group V (injected with attenuated RS-12 mumps virus, and Right: group W 189 
(injected with wild-type RS-12 mumps virus). 190 

 191 

 192 

4. Discussion: 193 

Considering the neurotropic nature of MuV, the safety requirements of mumps vaccines should be 194 

carefully met by the manufacturers (22). One of the most important safety aspects of the mumps 195 

vaccine is the neurovirulence potential of the MuV vaccine strain in humans (19). These concerns 196 

have arisen when neurovirulence characteristics have appeared in some vaccinees (19). The risk 197 

of developing new live-attenuated mumps vaccines using strains with neurovirulence potential 198 

may persist unless an animal model becomes available with the ability to distinguish neurovirulent 199 

from non-neurovirulent strains (19). 200 

At now, the standard method for assessing the neurovirulence risk of human vaccines, as 201 

recommended by the World Health Organization, is to test the vaccine's seed stocks in monkey 202 

models (19, 20, 22). However, the neurovirulence test of the mumps vaccine strains in monkeys 203 

(MNVT) is questionable in terms of the reliability of results (22), since the test is not sufficiently 204 

robust to predict the neurovirulence phenotype of MuV strains in humans (23). The clinical and 205 

pathological consequences of a vaccine strain of the MuV in monkeys do not necessarily reflect 206 

the neurovirulence of that strain in vaccinees (19). In other words, the MNVT test is not a true and 207 

accurate representation of the risk of neurovirulence in humans. According to the reports, the 208 

MNVT also cannot distinguish between wild-type and attenuated MuVs that are isolated from CSF 209 

in post-vaccination aseptic meningitis cases (22). There have been attempts to improve the efficacy 210 

of MNVT for accurate prediction of MuV neurovirulence in humans (23). It is therefore necessary 211 

to develop alternative animal models for evaluating the neurovirulence of MuV (22). 212 

Attempts to introduce a murine model for MuV neurovirulence have been unsuccessful (22). 213 

Although the hamsters, as small animal models that are widely used in pathology studies, (19) 214 

have not been capable of reliably distinguishing neurovirulent strains from non-neurovirulent ones 215 

(8, 18). Moreover, studies on targeted mutagenesis with the aim of developing non-neurovirulent 216 

MuV strains have faced difficulties in the evaluation of efficiency due to the lack of a suitable 217 

animal model. Introducing an animal model that reliably predicts MuV neurovirulence in humans, 218 
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could also dramatically help to define the relation between molecular markers of MuV 219 

neurovirulence with greater certainty (19).  220 

Successful attempts have been made over the years to introduce newborn rats as a reliable animal 221 

model of MuV neurovirulence (5, 19, 20, 22, 23). The early stages of these studies were conducted 222 

with an emphasis on the qualitative aspect, such that a highly neurovirulent strain called Kilham 223 

and a very harmless vaccine strain called Jeryl-Lynn were injected into the brains of newborn rats, 224 

and three important factors including the weight gain pattern, the viral titer in the brain tissue, and 225 

pathological signs in the brain sections have been considered as indicators of neurovirulence 226 

assessment (19). The results of this study showed differences in the process of weight gain, the 227 

incidence of hydrocephalus, as well as the ability to recover the virus from the animal's brain (19). 228 

As the next step, more strains of MuV have been included in the test and a scoring system for the 229 

severity of hydrocephalus has been established in the (hereafter called RNVT) test (23). 230 

Subsequent studies have also demonstrated the validation and reproducibility of the RNVT, and 231 

accurate prediction of the neurovirulence pattern of different strains of MuV (including wild, 232 

partially attenuated, or fully attenuated). Software has also been used to calculate the RNVT Score 233 

(20).  234 

The main aim of this study was to evaluate the neurovirulence of wild-type and vaccine strains of 235 

an Iranian MuV, RS-12, in a newborn rat model. In the literature review, it was found that all 236 

RNVT tests were performed on Lewis rats. Since the Lewis breed was not available, it was decided 237 

to conduct this experiment using Sprague-Dawley newborn rats. This study was designed and 238 

conducted with a qualitative view to understand whether evaluation of neurovirulence criteria 239 

(weight gain pattern, formation of hydrocephalus, and recovery of MuV from the brain samples) 240 

following injection of RS-12 to Sprague-Dawley newborn rats is possible. Neither Sprague-241 

Dawley newborn rats nor the RS-12 MuV strain had been examined in an RNVT before, so no 242 

data on the amount and viral titer suitable for injection to the brain were available. However, 243 

according to the methodology of a similar study (22), the volume of injection material per animal 244 

was adjusted for 20 microliters of viral samples containing 103.5 particles/ml. The control group 245 

was injected with the same volume of MRC-5 cell supernatant, the same cell that had been used 246 

in the propagation of the RS-12 strain. 247 

The weight gain curve of the C, V, and W groups showed the same pattern till day 5 post-injection 248 

but started to differ thereafter. Group C and Group W have experienced the lowest and highest 249 
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weight gains respectively. The difference between the weight gain of group V (that had been 250 

injected with the attenuated RS-12) and group W (that had been injected with Wild-type RS-12) 251 

was statistically significant. It means that regarding weight gain, Sprague-Dawley newborn rats 252 

can distinguish between wild-type and attenuated RS-12 viruses. These observations are fully 253 

consistent with the data reported in the corresponding articles. 254 

Signs of hydrocephalus first appeared on day 15 post-injection and reached the highest degree on 255 

day 30th, when hydrocephalus was measured as much as 1%, 5%, and 10% in the C, V, and W 256 

groups respectively. In the relevant articles, the signs of hydrocephalus were observed on day 12 257 

post-injection. This three-day delay may have a relation with the nature of the viral strain and the 258 

breed of animal in use. In the first RNVT study (19), there was also a report on signs of damage 259 

to the cerebellum on day 19 post-injection. Although in this study some abnormalities in the 260 

cerebellum’s texture were seen in W and V groups on day 25 post-injection, we did not pay more 261 

attention to the cerebellum, since the same has been ignored in more recent studies. Based on the 262 

suggested scoring system, 0%, up to 6%, up to 12%, and up to 26% hydrocephalus has been 263 

considered as negative, mild, moderate, and severe respectively (23). Therefore, the grade of 264 

hydrocephalus in this study could be reported as mild for group V and moderate for group W. 265 

Regarding this finding, newborn Sprague-Dawley rats seem to be capable of distinguishing 266 

between wild-type and attenuated RS-12 strains. The pathogenesis of hydrocephalus caused by 267 

MuV is not well understood. However, it is proposed that the severity of hydrocephalus correlates 268 

with the ability of different strains of MuV to replicate in the rat's brain (23). 269 

The mean of viral titer in the group W brain samples decreased till day 9 post-injection, then it 270 

increased and reached its maximum by the day 15 post-injection, followed by a decrease in a 271 

manner that the virus was not detected after day 19 post-injection. In the case of group V, the 272 

decrease in viral titer continued until day 25, when the virus become undetectable thereafter. These 273 

findings are consistent with similar studies (20, 24). However, there are slight differences that may 274 

be related to the differences between Lewis and Sprague-Dawley rats and the viral strain in use 275 

(RS-12). In addition, it should be noted that RS-12 wild-type and attenuated strains had been 276 

included in the current study, whereas a completely safe vaccine strain (Jeryl Lynn) were compared 277 

against a highly neurovirulent strain (Kilham) in the referenced study. Since the severity of the 278 

neurovirulence of wild RS-12 has not yet been compared with a highly neurovirulent strain such 279 

as Kilham, it cannot be expected to achieve the same results. However, isolating the virus from 280 
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the brain preparations (which represents the replication of the virus in the animal’s brain) and 281 

obtaining similar results in terms of the co-incidence of the decrease of the viral titer and the 282 

development of neuropathological symptoms is very valuable and promising. Moreover, the fact 283 

that the attenuated virus has been isolated from the brain for a longer period compared to the wild-284 

type one, may be attributed to the lower severity of brain damage in the animals injected with the 285 

attenuated virus. 286 

This study has introduced a newborn Sprague-Dawley rat model capable of demonstrating the 287 

neurovirulence potential of mumps viruses in humans and distinguishing between wild-type and 288 

attenuated RS-12 strains. Further experiments are needed for optimization and validation of the 289 

test procedures. 290 

 291 
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