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Dear Editor, 23 

The COVID-19 pandemic has posed unprecedented challenges to global healthcare systems, 24 

especially in the timely assessment of disease severity and resource allocation (1). Traditional 25 

clinical and imaging markers, although useful, often lack the sensitivity and speed necessary for 26 

early and accurate patient classification. In this context, artificial intelligence (AI) has emerged as 27 

a transformative tool in assessing COVID-19 severity, aiding diagnosis, prognosis, and clinical 28 

decision-making (2). 29 

AI, particularly through machine learning (ML) and deep learning (DL) algorithms, can process 30 

extensive volumes of clinical, imaging, and laboratory data with remarkable speed and accuracy 31 

(3). For instance, convolutional neural networks (CNNs) have shown high accuracy in detecting 32 

COVID-19-related abnormalities in chest CT and X-ray images, often outperforming conventional 33 

radiological assessments in identifying ground-glass opacities and fixation patterns (4). CNNs with 34 



 

 

three layers use medical datasets to recognizing images for good identification, and python 35 

language for training the proposed deep transfer learning models (5). We should be mentioned 36 

CheXNet, the largest publicly available chest X-ray dataset that can detect 14 diseases hinging on 37 

X-ray images (6). So this ML based models can compete with radiologists in analyzing radiology 38 

images by extra tools, for example using natural language processing (NLP) for high level 39 

transforming like IBM Watson Health (7). 40 

Additionally, AI models that integrate vital signs, oxygen saturation, comorbidities, and 41 

biomarkers such as D-dimer and C-reactive protein have shown promise in predicting disease 42 

progression and risk of ICU admission (8). SOFA (Sequential Organ Failure Assessment) is a 43 

clinical scoring system used to evaluate the function of vital organs in critically ill patients in the 44 

ICU. It measures the severity of organ failure based on the respiratory, cardiovascular, hepatic, 45 

renal, hematologic, neurologic. Each organ is scored from 0 to 4 (normal to most severe 46 

dysfunction), and the total score 0 to 24 that shown the degree of multi-organ failure. DEEP SOFA 47 

is a cutting-edge deep learning-based model that help more accurate organ failure prediction, 48 

improved ICU management, integration of multi-source data, personalized treatment and can be 49 

used by trained nurses and doctors (9). 50 

One notable application is the development of AI-based triage tools in emergency department, that 51 

can quickly identify high-risk patients and prioritize care, particularly when healthcare resources 52 

are limited (10). To illustrate this, knowledge-augmented temporal model for emergency care 53 

(KATE) is an advanced ML model for prediction and making better decisions than humans. KATE 54 

with some steps such as multimodal data integration, feature extraction, hybrid neural network, 55 

outcome prediction and explainable AI with some better primary result use in sophisticated but 56 

small hospitals (11). In addition, AI-based predictive models are used to predict the need for 57 

ventilatory support and the likelihood of recovery or mortality, improving individualized patient 58 

management (12). 59 

Despite these advances, challenges remain. Algorithm transparency, data privacy, and the need for 60 

external validation across diverse populations are important concerns (13). Most AI models are 61 

developed using retrospective datasets, often with regional biases, which limits their 62 

generalizability (14). Furthermore, integrating AI into routine clinical workflows needs 63 

interdisciplinary collaboration and strong regulatory frameworks (15). 64 

However, the pandemic has catalyzed the acceptance and adoption of AI in clinical medicine. 65 

Future strategies should concentrate on creating ethically sound, clinically validated, and 66 

interpretable AI systems tailored for pandemic response (16). Integrating real-time data from 67 

wearable devices, electronic health records, and cloud-based platforms can increase the capacity 68 

of AI to provide timely and accurate assessments of COVID-19 severity (17). 69 

In conclusion, AI shows a powerful complement to the fight against COVID-19, providing tools 70 

to accurately evaluate severity and optimize resources. Continued investment in AI research and 71 

its responsible implementation critical to strengthening global preparedness for current and future 72 

pandemics. 73 
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