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INTRODUCTION 

Penicillium chrysogenum, a filamentous 
ascomycete, exhibits the exceptional ability to produce 
penicillin, other β-lactam antibiotics as well as various 
secondary metabolites (Frisvad et al. 2004, Guzmán-
Chávez et al. 2018, Kumar et al. 2018, Wu et al. 2020). 
P. chrysogenum is the most extensively studied fungus
with regard to penicillin production, owing to its
multiple copies of the penicillin biosynthesis gene
(Cuero et al. 1986, Fierro et al. 2022). These genes
carry out the biosynthesis of various compounds with
complex and highly regulated enzymatic pathways

(Fatima et al. 2019, Li et al. 2018). Understanding the 
metabolic pathways of P. chrysogenum is crucial for 
optimizing antibiotic biosynthesis at an industrial scale 
and discovering new biologically active compounds 
(Abraham et al. 1941, Nair 2007). Penicillium 
chrysogenum cultures generally produce limited 
quantities of penicillin, even under optimal cultivation 
conditions (Fernandez-Canon et al. 1989, El‐Sayed 
2021). However, there are methods to increase 
penicillin production by changing the composition of 
growth media combined with the appropriate use of 
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physical factors (Dharmarha et al. 2019). It has been 
shown that low doses of ionizing radiation (200-400 
Gy) may enhance spore germination and mycelial 
growth, leading to increased penicillin production 
(Aljeldah et al. 2019). Gamma irradiation is another 
treatment that influences the penicillin production in P. 
chrysogenum and warrants further research for its 
potential in pharmaceutical manufacturing (Veerapagu 
et al. 2008, Ibrahim et al. 2023). 

Gamma irradiation, a form of ionizing radiation, 
has been extensively studied for its potential to create 
mutant strains of microorganisms for use in industrial 
penicillin production processes (Havn Eriksen et al. 
1994, Onyegeme-Okerenta et al. 2009). There is 
evidence that gamma irradiation induces mutations in 
P. chrysogenum, altering its genetic makeup and 
enhancing its ability to produce penicillin (Mesquita et 
al. 2013, Hardianto et al. 2015). 

Researchers have investigated various parameters 
such as radiation dosage, exposure duration, and their 
impact on penicillin production. Some studies have 
demonstrated that certain mutant strains show 
significant potential, producing higher quantities of 
antibiotics compared to the wild-type strain (Davey 
and Johnson, 1953, Aljeldah et al. 2019). The increase 
in penicillin production following gamma irradiation is 
influenced by several factors, including the irradiation 
conditions, the microorganism's genetic characteristics, 
and the composition of the growth medium (Douma et 
al. 2011, Amadi 2020). Enhanced penicillin production 
may also be linked to increased sporulation levels and 
morphological changes in the mutant strains of P. 
chrysogenum (Pienia  ̧ żek et al. 1973, Grijseels et al. 
2017). 

Furthermore, recent developments show the 
effectiveness of UV radiation in stimulating penicillin 
production in the mutant strains of P. chrysogenum, 
suggesting it as another potential mutagenic approach 
(Clutterbuck et al. 1932, Veerapagu et al. 2008). This 
research focuses on how gamma radiation increases 
fungal growth and penicillin production, even when 
cultured in various glucose-lactose media using a P. 
chrysogenum mutant.  

Systematic treatment of fungi with gamma rays is 
expected to confer some mutations that enhance 
penicillin production. This work will focus on 
assessing antibiotic-producing fungal strains, including 
genetic analyses of the observed mutants. Given the 
changes in penicillin production levels between 
mutated and wild strains grown on different sources of 
carbohydrate, we aim to unravel the optimal raw 
materials required for effective antibiotic production. 
This research is expected to aid in identifying optimal 
culture conditions and developing new genetically 
modified P. chrysogenum strains that are more 
effective and aligned with the industrial requirements 
for penicillin production. The importance of this study 
lies in its potential to shift penicillin production toward 
a more cost-effective and eco-friendly direction. Our 

goal is to develop enhanced biosynthetic strains by 
harnessing the mutagenic effects of gamma rays, 
thereby reducing production costs and increasing the 
availability of this important antibiotic. In addition, the 
results of this work may support achieving similar 
outcomes in the production of other important 
secondary metabolites and contribute to enhancing the 
overall efficiency of fungal biotechnology. 

MATERIALS AND METHODS 

Fungal Sample Preparation 
Penicillium chrysogenum (PTCC5031) was obtained 

from the Mycology Laboratory at the Sari Agricultural 
Sciences and Natural Resources University. It was 
cultivated on potato dextrose agar (PDA) medium and 
incubated at 25°C. Once the fungus had grown 
sufficiently, a spore suspension was created and kept at 
4°C. This suspension was then sent to the Agricultural 
Research Institute of the Karaj Nuclear Science and 
Technology Research Institute for additional 
experiments. 

Production Culture Conditions 
P. chrysogenum and its mutant isolates were cultured 

in 96 Erlenmeyer flasks, each containing 50 mL of 
medium initially, with a total working volume of 100 
mL per flask. The experiments were conducted using 
sixteen different media formulations, each replicated 
three times for both P. chrysogenum and its mutant 
isolates.  All media had a fixed base composition, 
including peptone, yeast extract 3.5 g/L, and standard 
salts (MgSO₄·7H₂O 0.005 g/L, KH₂PO₄6.5 g/L, 
ZnSO₄·7H₂O, 0.02 g/L). The variable components (the 
carbon sources: sucrose and lactose) were tested at three 
different concentrations (1 g, 3 g, and 6 g/L) individually 
and in combination, forming the sixteen distinct media.  
The initial pH of all culture media varied between 4 and 
5, and fermentation was carried out at 24°C. These 
modifications in carbon source type and concentration 
allowed us to investigate their effects on penicillin 
production under moderate conditions (Tan and Ho 
1991). 

Extraction of penicillin 
The liquid-liquid extraction technique was used to 

recover penicillin from a variety of shaking flask 
cultivation systems (Prasad and Prasad, 2010). It 
consisted of 96 extractions, each with three replicates 
among P. chrysogenum and its mutant isolates. Fifty 
milliliters of the Penicillium culture filtrate grown in site 
broth (rich in penicillin) was extracted triple times using 
ethyl acetate in a liquid-liquid extraction procedure. Mix 
them well to transfer penicillin into the organic phase-
ethyl acetate. The ethyl acetate containing penicillin was 
separated into two phases. The ethyl acetate containing 
penicillin was back-extracted into an aqueous solution of 
2% sodium acetate to ensure all the penicillin transferred 
completely into the aqueous phase. The solution left 
with penicillin was collected to analyze (Aljeldah et al. 
2019). 
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HPLC analysis  

A total of 96 penicillin extractions from P. 
chrysogenum and its mutants were prepared and injected 
into the HPLC system for analysis. The penicillin 
analysis was performed using High-Performance Liquid 
Chromatography (HPLC). The analysis was executed 
under specific conditions: a C-18 column and a UV 
detector set to 220 nm for optimal detection. The mobile 
phase was made up of two components: (A) 10 mM 
ammonium acetate (pH 4.5, adjusted with acetic acid) 
and (B) acetonitrile, mixed in a 75:25 (A) ratio. The 
flow rate was kept at 1 mL/min. For comparative 
purposes, the results were evaluated against 
commercially available penicillin injection standards 
(Aljeldah et al. 2019). 

Statistical analysis 
Before conducting statistical analysis, the data were 

assessed for normality and homogeneity of variances 
using the Jarque-Bera test. (Jarque and Bera 1987) and 
Levene's test (Levene 1960), respectively. If required, 
the data was transformed to (x+1). Analysis of variance 
(ANOVA) was then applied to assess all biological and 
damage indicators using a factorial randomized 
complete block design, followed by the mean 
comparisons using Fisher's Protected Least Significant 
Difference (LSD) method. 
 
RESULTS AND DISCUSSION 

Comparison of Antibiotic Production 
This study examined the impact of mutations and 

varying carbon sources on the antibiotic production 
capacity of P. chrysogenum, with a particular focus 
on penicillin synthesis. Comparative experiments 
assessed the antibiotic yields of mutant and wild-
type strains when cultured on lactose, sucrose, and 
their combination. 

The results revealed that mutant fungal isolates 
consistently exhibited significantly higher penicillin 
production rates compared to the wild-type strains. 
Our findings highlight the complex relationship 
between carbon source concentration and antibiotic 
production efficiency. Interestingly, increasing the 
concentration of carbon sources in the growth 
medium did not universally enhance antibiotic 
synthesis. In certain cases, increased concentrations 
of carbon sources led to a reduction in penicillin 
production, indicating the existence of an optimal 
concentration threshold for each carbon source, 
beyond which production efficiency diminishes.  

Furthermore, we explored the effects of using 
single versus combined carbon sources. The data 
indicated that combining carbon sources does not 
always enhance antibiotic biosynthesis. In some 
instances, the use of multiple carbon sources had a 
detrimental effect, significantly reducing penicillin 
production. Overall, as shown in (Fig. 1), our 

findings emphasize the complex interactions 
between gamma radiation-induced mutations, the 
type and concentration of carbon sources, and their 
combined influence on penicillin biosynthesis in P. 
chrysogenum. 

These results demonstrate a positive correlation 
between sucrose concentration and penicillin 
production for both strains, with production 
increasing up to a certain threshold (Fig.1). The 
mutant strain consistently outperformed the wild 
type under all conditions. For the wild-type strain, 
penicillin production peaked at both 1 g/L sucrose 
and 6 g/L sucrose, with a decrease at 3 g/L sucrose. 
In contrast, the mutant strain exhibited maximum 
production at 3 g/L sucrose, with a decline at 6 g/L 
sucrose. These results highlight the superior 
biosynthetic capacity of the mutant strain, 
particularly in the S3 (3 g/L sucrose) culture 
medium. 

 
Fig.1. Comparison of the mean production of 
penicillin antibiotic by wild strains of Penicillium 
chrysogenum and a mutant isolate in sucrose culture 
medium with varying concentrations. (S1 = 
sucrose1g/L, S3 = sucrose3g/L, S6 = sucrose 6g/L) 

 

The Fig. 2 illustrates the effect of different 
lactose concentrations on penicillin production in 
both mutant and wild strains. The mutant strain 
consistently produced significantly higher levels of 
penicillin compared to the wild type under all 
conditions. Notably, the L1 medium (containing 1 
g/L lactose) yielded the highest penicillin production 
in the mutant strain, significantly surpassing all 
other tested media. While the L3 (3 g/L lactose) and 
L6 (6 g/L lactose) media also enhanced penicillin 
production in the mutant strain, the levels achieved 
were lower than those in L1, suggesting a decline in 
production as lactose concentration increased.  In 
contrast, the wild-type strain exhibited lower and 
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relatively consistent levels of penicillin production 
across all media, with the highest yield observed in 
L3; however, this difference was not statistically 
significant compared to the other conditions. These 
results underscore the enhanced biosynthetic 
capacity of the mutant strain, particularly in the L1 
medium, whereas the wild-type strain demonstrated 
limited and uniform production across the tested 
conditions. 

 
Fig. 2. Comparison of the mean production of 
penicillin antibiotic by wild strains of P. 
chrysogenum and a mutant isolate in lactose culture 
medium with varying concentrations. (L1 = lactose 1 
g/L, L3 = lactose 3 g/L, L6 = lactose 6 g/L) 

 

In (Fig. 3), penicillin production was compared 
in culture media with different combinations of 
sucrose and lactose for both wild-type and mutant 
isolates of Penicillium chrysogenum. Across all 
mixed cultures, the mutant isolate consistently 
outperformed the wild type in penicillin production. 
When sucrose was set at 1 g/L, the highest penicillin 
production by the mutant isolate occurred with 3 g 
of lactose (Fig. 3A). With 3 g sucrose, the peak yield 
was observed with 1 g lactose (Fig. 3B). At 6 g 
sucrose, maximum production was achieved with 6 g 
lactose (Fig. 3C). Overall, the mutant strain showed 
the highest penicillin production in media containing 
3 g sucrose with 1 g lactose and 6 g sucrose with 6 g 
lactose. 

In contrast, the wild strain produced the most 
penicillin in media with 1 g of sucrose and varying 
lactose concentrations. However, increasing sucrose 
and lactose concentrations had a counterproductive 
effect, reducing penicillin production in the wild 
strain. These findings underscore the mutant strain’s 
superior ability to synthesize penicillin under 
specific media conditions, whereas the wild type 

exhibited limited responsiveness to changes in 
sucrose and lactose concentrations. 

 

 

 

 

 

Fig. 3. Comparison of the mean production of 
penicillin antibiotic by wild strains of Penicillium 
chrysogenum and a mutant isolate in combined 
sucrose and lactose culture media. A. Penicillin 
production in media with 1 g/L of sucrose and three 
concentrations of lactose: 1 g/L (S1L1), 3 g/L 
(S1L3) and 6 g/L (S1L6); B. Penicillin production in 
media with 3 g/L of sucrose and three concentrations 
of lactose: 1 g/L  (S3L1), 3 g/L (S3L3) and 6 g/L 
(S3L6); C. Penicillin production in media with 6 g/L 
of sucrose and three concentrations of lactose: 1 g/L 
(S6L1), 3 g/L (S6L3) and 6 g/L (S6L6). 
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Fig. 4. Overall comparison of the mean production 
of penicillin antibiotic by wild strains of P. 
chrysogenum and a mutant isolate in varying sucrose 
culture medium, including sucrose, lactose, and the 
combination of sucrose and lactose.  

 
Fig. 5. The Mutant (Mu) isolate produces the 
greatest amount of penicillin, yielding nearly three 
times more antibiotics compared to the wild strain 
(W). 

 

According to  (Fig. 4 ), the relative comparison of 
various culture media regarding the production of 
penicillin by P. chrysogenum and its mutant isolate 
exhibits that sucrose is the best medium for both 
fungal strains. It has also been found that the titer of 
penicillin decreases in media that contain only 
lactose and also in media containing a combination 
of sucrose and lactose  

This study thoroughly explored the effects of 
gamma radiation-induced mutations and various 
concentrations of sucrose and lactose on penicillin 
production in P. chrysogenum. The results revealed 
that both genetic mutations and carbon source 
composition have a significant impact on penicillin 
biosynthesis, providing valuable insights for 
optimizing production processes. The findings 
confirmed that gamma radiation-induced genetic 
changes enhanced the metabolic pathways involved 
in penicillin synthesis, as shown by the mutant 

strain's ability to produce significantly higher 
penicillin titers under various culture conditions. 
These results are consistent with previous studies 
(Stauffer and Backus 1954, Onyegeme-Okerenta et 
al. 2013), which reported increased antibiotic 
production in P. chrysogenum mutant strains 
exposed to ultraviolet radiation (Onyegeme-
Okerenta et al. 2013). This preliminary analysis 
highlights the need for further detailed research into 
genetic and cultural strategies that could further 
enhance antibiotic production in Penicillium 
chrysogenum. 

Gamma radiation-induced mutagenesis led to the 
development of a mutant strain with nearly doubled 
penicillin production compared to the wild type. All 
gamma-irradiated fungal strains showed 
significantly altered penicillin titers compared to 
their wild-type counterparts. This substantial 
improvement underscores the potential of induced 
mutation to enhance penicillin production, aligning 
with previous research (Karunakar et al. 2012, 
Aljeldah et al. 2019), which reported similar results. 
Notably, these studies have shown that gamma 
radiation not only boosts spore germination but also 
increases penicillin production in Penicillium 
chrysogenum (Luckey 1982, Macklis and Beresford 
1991). 

This study highlighted the complex relationship 
between carbon substrate concentration and the 
efficiency of penicillin production. Although higher 
carbon levels are generally expected to enhance 
yield, the results indicate the existence of optimal 
concentration ranges beyond which production 
declines, as illustrated in (Figs. 3 and 4). For 
example, sucrose concentrations up to 6 g per 
culture medium were positively correlated with 
penicillin production, whereas higher concentrations 
led to reduced yields. These findings align with 
previous studies (Kumar et al. 2018, Amadi 2020), 
which reported that carbon sources such as lactose, 
corn starch, and corn dextrin at 3% concentrations 
yielded the highest penicillin production, with no 
further improvement at higher levels (Sánchez et al. 
2010). Furthermore, this study found that combining 
different carbon sources does not necessarily 
enhance antibiotic production and may, in some 
cases, even suppress it, as shown in (Figs. 3A, 3B, 
and 3C). For instance, while the S3L1 medium 
resulted in elevated penicillin output (Fig. 3B), a 
marked decrease was observed in the S6L6 medium. 

(Fig. 3C). These results highlight the importance 
of carefully selecting and optimizing both the type 
and concentration of carbon sources to maximize 
antibiotic yield. Studies by Hardianto et al. (2015) 
and Weber et al. (2012) demonstrated that 
ultraviolet-induced mutations can enhance penicillin 
production; however, the extent of this enhancement 
is influenced by the growth conditions and the 
specific composition of the carbon Our results also 
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show that sucrose is generally more effective than 
lactose in promoting penicillin synthesis (Fig. 1), 
likely due to sucrose’s higher metabolic efficiency, 
which provides more energy for production. The 
study highlights the significant impact of mutations 
and carbon source ratios on penicillin production 
(Fig. 5). By selecting appropriate mutant strains and 
optimizing carbon source combinations, penicillin 
production can be improved, reducing costs and 
enhancing efficiency. These findings are consistent 
with previous studies (Fierro et al. 2006, Fatima et 
al. 2019). 

Implications and Future Research  
Optimizing the type and concentration of carbon 

sources can significantly boost yields, lower costs, 
and improve efficiency in penicillin production by 
P. chrysogenum. Research underscores the 
importance of carbon source composition, with 
sucrose proving more effective than lactose. Each 
carbon source has an optimal concentration range, 
and exceeding this range can lead to a decline in 
production efficiency. Furthermore, combining 
carbon sources does not always improve production 
and may, in some cases, decrease it, highlighting the 
importance of carefully selecting the right carbon 
sources for optimal antibiotic production. 

Future studies should explore the genetic and 
metabolic pathways affected by induced mutations 
to develop strategies for improving strains through 
genetic engineering or metabolic optimization. 
Gaining a deeper understanding of the molecular 
mechanisms behind enhanced penicillin production 
could lead to more efficient strain development, 
resulting in higher yields and reduced production 
costs. Genes such as pcbAB, pcbC, and penDE are 
essential in the penicillin biosynthesis pathway, and 
mutations in these genes could boost enzyme 
activity, ultimately improving penicillin production 
(Fierro et al. 2022). Specifically, increasing the 
activity of ACV synthetase, encoded by pcbC, could 
raise the availability of ACV, a crucial precursor in 
the penicillin synthesis pathway. Additionally, 
optimizing the phenylacetic acid (PAA) pathway 
could further enhance penicillin yield (Zhgun 2023). 
Future research should aim to characterize the 
genetic and metabolic changes driven by mutations 
while examining metabolic pathways related to 
carbon source utilization. This approach would help 
identify key targets for strain optimization and lead 
to the development of more efficient and cost-
effective production methods, ultimately benefiting 
the pharmaceutical industry and healthcare by 
making antibiotics more accessible. 
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زایی القاشده با پرتوي گاما و از طریق جهش  Penicillium chrysogenumسیلین در بهبود تولید پنی 

 سازي منبع کربن بهینه

 

 2یانیدشت م امیلیو ، 1يمراد زهره ، 1زاد  ییاله بابا یول ،1يقنبر کی تاج یعل محمد ، 1يورند یمانیبر یعل محمد

 . ایران  دانشگاه کشاورزي و منابع طبیعی ساري، ساري،  دانشکده علوم گیاهی،  پزشکی،گیاه   گروه1
 . سیدنی، استرالیادپارتمان جراحی، بیمارستان سنت جورج، دانشگاه نیو ساث ولز،    آزمایشگاه تحقیقاتی سرطان،3
 

 چکیده 
آنتی  1928سیلین، که در سال  پنی به عنوان یک  فلمینگ کشف شد،  الکساندر  بهبیوتیک مهم شناخته میتوسط  قابل  شود که  طور 

،   Penicillium chrysogenumگردد.  هاي باکتریایی را دگرگون کرد و نقطه عطفی در تاریخ پزشکی محسوب میتوجهی درمان عفونت
ها براي افزایش تولید  کند. تلاشسیلین ایفا میبه عنوان یک گونه قارچی با بازدهی بالا، همچنان نقش محوري در تولید صنعتی پنی

زایی القایی براي حداکثرسازي سیلین تاکنون به عنوان یک حوزه پژوهشی فعال مطرح بوده و رویکردهاي مختلفی از جمله جهشپنی
شده گرفته  کار  به  تولید  جهشبازده  تأثیر  بررسی  مطالعه،  این  هدف  القا اند.  بر    هاي  کربن  مختلف  منابع  از  استفاده  و    تولیدشده 

در  پنی با  هاي جهشاست. سویه    Penicillium chrysogenumسیلین  مقایسه  در  بودند،  ایجاد شده  گاما  پرتوي  تأثیر  که تحت  یافته 
هاي کشت حاوي لاکتوز و ساکارز و ترکیب این دو با مقادیر مختلف مورد ارزیابی بیوتیک در محیط هاي وحشی از نظر تولید آنتیسویه 

آنالیز در   96گیري شد و در مجموع  ) اندازهHPLCسیلین با استفاده از کروماتوگرافی مایع با کارایی بالا (قرار گرفتند. میزان تولید پنی
انجام پذیرفت. یافته هاي حاوي ساکارز نسبت به محیط کشت ویژه در محیطسیلین بههاي مطالعه نشان داد که تولید پنیسه تکرار 

سویه و  دیگر  جهشهاي  سویههاي  با  مقایسه  در  بازده یافته  بین  رابطه  حال،  این  با  است.  داشته  چشمگیري  افزایش  وحشی  هاي 
سیلین نشد.  طوري که افزایش غلظت منبع کربن همیشه منجر به افزایش تولید پنیبیوتیک و غلظت منبع کربن غیرخطی بود، بهآنتی

. منجر شودسیلین  تواند به بهبود تولید پنیزایی میهاي جهشسازي غلظت منبع کربن و روشکند که بهینه این پژوهش پیشنهاد می
 هاي صنعتی است. بیوتیکاین نتایج داراي پیامدهایی براي طراحی فرآیندهاي زیستی در تولید آنتی

 
 

 . (HPLC)کروماتوگرافی مایع با کارایی بالا ،  سویه وحشیجهش، ، بیوتیکآنتیکلمات کلیدي: 
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