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ABSTRACT 
 

Breast cancer is a most common cancer  that primarily  affects women, in which cells 

become abnormal and multiply in an uncontrollable fashion. The etiology of these cancers 

is predominantly hereditary, with gene mutations and geographic indications being the 

predominant factors in most invasive breast cancer types. However, it is important to note 

that several other factors, including age, gender, ethnic background, and environmental 

influences, also contribute to the development of these diseases. Non-coding RNAs refer 

to a class of endogenous molecules that play a role in the development of various types of 

cancer. The objective of this research is to identify differentially expressed genes in cases 

of breast cancer. A series of analyses were conducted on the RNA-Seq data from the 

TCGA related to breast cancer. These analyses included both expression and survival 

studies. The objective of these analyses was to explore the gene expression of the samples 

and genes computationally through the use of R programming. The results obtained after 

each analysis were inferred both visually and logically. A total of 613 genes were 

identified as exhibiting differential expression among the samples, with 254 genes 

demonstrating increased expression and 359 genes exhibiting decreased expression. The 

differentially expressed genes obtained using the R package "TCGA Biolinks" were 

subsequently employed in the construction of the ceRNA network. A comprehensive 

analysis of the TCGA biolinks data set revealed the presence of aberrantly expressed long 

non-coding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) 

in breast cancer samples. The analysis identified a total of 352, 183, and 254 cases, 

respectively, demonstrating significant disparities in gene expression patterns among 

different breast cancer samples. A study of 352 long non-coding ribonucleic acids 

(lncRNAs) revealed that two of these molecules, LINC00461 and MALAT1, exhibited 

particularly high levels of expression. These findings suggest that these two molecules 

may serve as more effective therapeutic biomarkers. Furthermore, the study identified a 

significant enrichment of microRNA target genes within the samples examined, 

suggesting a potential regulatory relationship between these molecules and their target 

genes. Consequently, this investigation has constructed competing endogenous RNA 

networks and has further elucidated the underlying biomarkers for breast cancer cohorts.  
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1. Introduction 
Cancer is a deadly disease that arises due to uncontrolled 
growth of body cells. The specific cause of cancer is 
impossible to predict in some cases; however, it is known 
that cancer cells can often be modulated by the external 
environment, intake of alcohol, tobacco, and so on. 
Furthermore, exposure to ultraviolet (UV) and other 
radiations has been identified as a contributing factor to 
cancer development (1). Proto-oncogenes are a group of 
genes that facilitate normal cellular growth. The proto-
oncogenes, by definition, are subject to mutation, which can 
ultimately result in oncogene formation and, consequently, 
cancer. The activation of oncogenes is typically caused by 
acquired mutations, such as chromosome rearrangements 
and gene duplications. As Levine and Puzio-Kuter (2010) 
have demonstrated, mutations in tumor suppressor genes 
such as p53, p16, and p21 result in the initiation of 
uncontrolled cell proliferation (2). Breast cancer is among 
the most prevalent cancers affecting women in the United 
States, Asia, and Africa. Recent research suggests that one 
in eight women is at risk of developing breast cancer in her 
lifetime  (3). The development of this neoplasm originates 
in breast cells, lobules (the glands that contain milk) and 
ducts (tubes that carry the milk from lobules to the nipples). 
The development of breast cancer is characterized by the 
unregulated growth of modified breast cells, lobules, or 
ducts  (4). Breast cancer is categorized into two distinct 
classifications: invasive and non-invasive. Invasive breast 
cancer is characterized by its capacity to extend into the 
surrounding tissues, whereas noninvasive breast cancer 
remains confined to the ducts or lobules within the breast. 
The classification of breast cancer is typically divided into 
three distinct subtypes. The first of these is hormone 
receptor-positive breast cancer, which is characterized by 
the presence of oestrogenic and/or progestin receptors 
within the tumor. It is estimated that between 60% and 70% 
of breast cancers are of this type. In addition, it has been 
determined that HER2-positive cancers account for 
between 15% and 25% of all breast cancers. This specific 
type of cancer manifests the presence of HER2 receptors 
(iii). Triple-negative breast cancer is characterized by the 
absence of oestrogenic, progesterone and HER2 receptors. 
Approximately 15% of breast cancers are classified as triple 
negative. This particular type of breast cancer has been 
observed to be prevalent among young women (5). Non-
coding RNAs (ncRNAs) are transcriptionally non-
functional and constitute the majority of the transcriptome 
(98%). Long non-coding RNAs (lncRNAs) constitute a 
subset of non-coding RNAs (ncRNAs) which typically 
range in size from approximately 200 nucleotides. These 
elements play pivotal roles in gene regulatory networks, 
operating through cis or trans acting pathways at 
transcriptional, posttranscriptional, and epigenetic levels  
(6,7,8). Furthermore, microRNAs (miRNAs) have been 
identified as a group of small non-coding molecules of 
approximately 22 nucleotides in length. These proteins 
have the capacity to bind to the 3'UTR of target mRNA, 

thereby modulating gene expression. Anomalous 
expressions of microRNAs (miRNAs) have been observed 
to function in conjunction with long non-coding RNAs 
(lncRNAs). LncRNAs have been demonstrated to influence 
the expression of miRNAs by sequestering target miRNAs 
and participating in the regulation of mRNA expression (9) 
. The presence of microRNA response elements (MREs) 
has been demonstrated to result in the downregulation of 
target molecules due to the inhibition of protein synthesis. 
This phenomenon is prevented by the presence of 
competitive endogenous RNAs (ceRNAs), which compete 
for microRNAs (miRNAs) with shared microRNA 
response elements (MREs). The function of ceRNAs is to 
regulate other RNA transcripts by competing with them for 
shared microRNAs. The ability of ceRNAs to modulate a 
single mRNA or even multiple mRNAs is well 
documented (10,11), as is their capacity to influence the 
available miRNAs in the cell. The function of ceRNAs is to 
modulate the expression levels of microRNAs (miRNAs), 
with a consequent effect on the repression of the target 
genes of the latter, thus contributing to the development of 
cancer. A ceRNA network is typically defined as an 
interactive network comprising mRNAs, miRNAs and 
lncRNAs that are differentially expressed in a specific cell 
or cancer sample (12, 13). The present study has two 
objectives. Firstly, it seeks to utilize R programming to 
analyze the TCGA breast cancer data in order to predict 
therapeutic long non-coding RNA (lncRNA) targets for 
breast cancer. Secondly, it aims to construct a competitive 
endogenous RNA (ceRNA) network through the analysis 
of differentially expressed mRNAs and their interacting 
microRNAs and LncRNAs. 
 
2. Materials and Methods 
2.1. Data Recovery and Preprocess 
As demonstrated in the study by Tomczak et al. (14) , the 
Genomic Data Commons (GDC) data portal contains over 
1,097 cases of breast cancer from the TCGA database 
(https://portal.gdc.cancer.gov/). In the present study, ten 
breast cancer samples (five tumor samples and five healthy 
samples) from the TCGA-BRCA project were selected and 
retrieved from TCGA via the GDC data portal using their 
corresponding barcodes (Table 1). The selection of ten 
samples was made on the basis of the following criteria: a) 
Project =TCGA-BRCA,b) Data Category = Gene 
expression) Data Type = Gene expression quantification) 
Experimental Strategy = RNA-Seq,e) Platform = Illumina 
HiSeq. The TCGA biolinks package utilizes multiple 
functions to facilitate the execution of these analyses. In 
order to successfully download the TCGA samples from 
the GDC data portal, it was necessary to execute the R code 
with the GDC query and GDC download functions. This 
was achieved by specifying the sample barcodes.  
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Furthermore, a heat map and a box plot were constructed 
for the same. 
2.2. Data Processing and Differential Expression 
Analysis 
The differential gene expression investigation encompasses 
functions such as normalization and data filtering. The 
analysis was conducted utilizing the TCGA Biolinks linked 
edgeR package. Within the framework of the edgeR 
package, a dispersion estimate is assigned to each gene. The 
raw p-values are then adjusted through the implementation 
of the False Discovery Rate (FDR) correction, a process 
which identifies the top differentially expressed genes. 
Subsequently, the output of the DEGs was filtered 
automatically using the absolute value of the LogFC greater 
than or equal to 1. The data was stored in the global 
environment of RStudio, which was subsequently utilised 
during the process of constructing the ceRNA network. 
2.3. Functional Enrichment and Survival Analysis 
Gene Ontology (GO) analysis was conducted to investigate 
the functional roles of the DE genes. The clinical data 
relevant to the specified samples were retrieved to facilitate 
the execution of survival analysis. TCGA Biolinks is a 
software program that can be used to create a survival plot. 
In addition, it can be used to conduct further Kaplan–Meier 
curve analysis. This analysis can be used to assess the 
correlation between the obtained RNA and survival time. 
The statistical significance of the results can also be 
evaluated. 
2.4. Prediction of Differentially Methylated Regions and 
Analysis of Sample Mean 
The differentially methylated CpG sites were identified and 
visualized using a volcano plot. Furthermore, a boxplot 
illustrating the mean DNA methylation levels per group 
was generated from the obtained data. A Starburst plot was 
utilised in the study of DNA methylation and gene 
expression in conjunction. 
2.5. Principal Component and Oncoprint Analysis for 
DEgenes 
The objective of this analysis was twofold: firstly, to reduce 
the number of dimensions of our gene set, and secondly, to 
visualize the results in a more effective manner. 
Furthermore, an Oncoprint barplot was constructed for the 
purpose of visualizing the various genomic alterations and 
mutations detected in the breast cancer samples. 
2.6. Selecting DEmRNAs for ceRNA Network Analysis 
The differentially expressed mRNAs were then used to 
construct the ceRNA network. In order to predict the  

 
 
 
 
 
 
 
 
 
 
interactive miRNAs and long non-coding RNAs 
(lncRNAs), the initial screening of these mRNAs was 
based on the criterion of |LogFC| and false discovery rate 
(FDR) value. The mRNAs with a value of |logFC|> 1.5 and 
FDR-value < 0.01 were retained. Following this filtration 
process, the number of mRNAs was reduced from 663 to 
254. 
2.7. Analysis of mRNAs-target miRNAs 
The interacting microRNAs were then assessed using the 
miRSystem database (http://mirsystem.cgm.ntu.edu.tw/) 
with the DEmRNAs that had previously been filtered. A 
total of 183 microRNAs (miRNAs) were found to strongly 
interact with target mRNAs  (15). 
2.8. Prediction of miRNAs-target lncRNAs 
The target long non-coding RNAs (lncRNAs) for the list of 
previously obtained microRNAs (miRNAs) were assessed 
using the miRcode database (http://www.mircode.org/). In 
the study by Jeggari et al.  (16), the researchers exclusively 
retained those long non-coding RNAs (lncRNAs) which 
were shared among the predicted microRNAs. 
2.9. Construction and Visualization of ceRNA Network 
In light of the voluminous nature of the data, the top 20 
mRNAs, along with their interacting microRNAs and long 
non-coding RNAs, were selected for the construction of the 
network. The data were then collated and the mRNA-
miRNA-lncRNA network was generated and visualised 
using Cytoscape software (17). The complete workflow can 
be viewed in Figure 1. 
 
3. Results 
3. 1. Preprocessing and Preparation of Matrix of Gene 
Expression 
The breast cancer data obtained for 10 samples from 
TCGA were first subjected to preprocessing prior to 
analysis. In this step, a matrix of gene expression was 
obtained, comprising more than 21,000 genes in the rows 
and TCGA sample barcodes in the columns. A heatmap 
illustrating the gene expression data in the samples and a 
boxplot following sample normalization were prepared 
(Figure 2). Each tile in the heat map represented the 
expression of a specific gene for a given sample, with the 
color scale indicating levels ranging from low to high. In 
this instance, the horizontal axis of the box plot is indicative 
of different samples, with the vertical axis representing 
expression value. Following the implementation of the 
normalization process, the black lines of the box plot were  
 

Tumor samples Healthy samples 

TCGA-A1-A0SD-01A-11R-A115-07 TCGA-A7-A0CE-11A-21R-A089-07 

TCGA-A8-A06Y-01A-21R-A00Z-07 TCGA-AC-A2FB-11A-13R-A17B-07 

TCGA-AC-A2FK-01A-12R-A180-07 TCGA-BH-A0AU-11A-11R-A12P-07 

TCGA-A7-A13E-01A-11R-A12P-07 TCGA-E2-A15I-11A-32R-A137-07 

TCGA-BH-A18P-01A-11R-A12D-07 TCGA-GI-A2C9-11A-22R-A21T-07 

 

Table 1. TCGA Barcodes of the samples selected for the study. 
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Figure 1. Workflow of Integrative biological analyses of breast cancer data using TCGAbiolinks package and ceRNA network 

construction. 

 

Figure 2. Heat map and Box plot for visual representation of breast cancer gene expression. 
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observed to be almost on a straight line, indicating a high 
level of normalization. 
3.2. Differential Gene Expression Analysis 
Among the total 21,022 genes, 613 genes were found to be 
differentially expressed with 254 genes upregulated and 
359 genes downregulated (Table 2 and 3) after filtering 
them by criteria |log2FC| >1.5. 
3.2. Enrichment Analysis 
Using the given set of differentially expressed genes that 
are up-regulated under certain conditions, an enrichment 
analysis was performed to identify classes of genes or 
proteins that were over-represented, using annotations for 
that gene set. The bar plots in Figure 3 depict the 
involvement of these genes in biological processes, cellular 
components, molecular functions, and biological pathways 
derived from this analysis. The analysis mainly projected 
genes associated with nuclear division, mitotic influencers 
and cell cycle interactors closely associated with cell 
proliferation and division. 
 
3.4. Survival Analysis 
The survival probability of the 10 breast cancer samples 
was analyzed and the plot (Figure 4) was constructed using 
the respective clinical data of the samples. The samples 
whose vital status was alive showed a standard progression 
whereas the dead samples showed a decline in the survival 
probability. Survival probability was also analyzed using 
the Kaplan-Meier method which resulted in the list of 
survival genes in the samples (Table 4) and the plots for the 
respective genes for the given p-values were constructed 
and shown in Figure 5. The two sample cohorts are 
compared by a Kaplan-Meier survival plot, and the hazard 
ratio with 95% confidence intervals were also calculated. 
3.5. Analysis of differentially methylated regions 
The differentially methylated CpG sites among the samples 
were searched in this analysis. The beta-values were used 
(methylation values between 0.0 to 1.0) to compare two 
groups. First, the difference between the mean DNA 
methylation of each group for each probe was calculated 
and then the p-value was calculated utilizing Wilcoxon test 
adjusting by Benjamini-Hochberg method. The parameters 
were adjusted to require a minimum absolute beta-values 
difference of 0.2 and a p-value of < 0.01 (Table 5). A 
volcano plot with hypomethylated region as green dot 
(Figure 6) and the scale with x-axis showing differential 
mean methylation and y-axis showing its significance and 
FDR corrected -P values were obtained. This plot helps in 
identifying the differentially methylated CpG sites and to 
return the object with the calculus in throw Ranges. 
3.6. Principal Component Analysis 
To foresee the biological meanings, a PCA plot was 
constructed to visualize the top 200 differentially expressed 
genes from PC1 and PC2 in the DEGS list (Figure 7). By 
interpreting this matrix, the axes of maximal variance are 
noted called as: The Principal Components (PCs). They are 
fixed up in descending order of their contribution to the 
variance. 

3.7. Sample Mean DNA Methylation Analysis 
A mean DNA methylation boxplot in Figure 8 was created 
using the data and calculating the mean DNA methylation 
per group. To identify differentially methylated CpG sites, 
the method involves first computing the difference in mean 
DNA methylation between groups. Subsequently, 
differential expression between two groups is assessed 
using the Wilcoxon test, with adjustments made using the 
Benjamini-Hochberg method. 
3.8. Starburst Plot 
The starburst plot was processed to combine information 
from two volcano plots and was utilized to study the 
relationship between distribution of gene expression and 
DNA methylation levels differentially expressed genes 
between the low and high expression groups. It facilitates 
the comparison of these two variables, plotting the log10 
(FDR-corrected P value) for DNA methylation (beta value) 
on the x-axis and gene expression on the y-axis for each 
gene. A black dashed line indicates the FDR-adjusted P 
value threshold of 0.01 (Figure 9) calculated using the 
Wilcoxon signed-rank test with the Benjamini-Hochberg 
adjustment method. 
3.9. Oncoprint Analysis 
Oncoprint bar plot was constructed to study the genomic 
alterations and mutations in the samples such as deletions, 
insertions, SNPs etc. (Figure 10). The SNPs were defined 
SNPs as maroon, insertions as yellow and deletions as 
purple. The upper barplot displays the number of genetic 
mutation per patient, while the barplot along the right 
shows the number of genetic mutations per gene. The 
oncoprint bar plot of the top 10 mutated genes showed 
major proportion of SNP’S and a few places with 
insertions. 
3.10. Structure of Competitive Endogenous RNA 
network 
The ceRNA network was constructed using the mRNA-
miRNA-lncRNA interaction. First, the mRNAs that were 
differentially expressed (DGEs) were filtered. The filtered 
254 mRNAs were used to retrieve the corresponding 153 
miRNAs. Then the corresponding 352 lncRNAs for these 
miRNAs were retrieved which were collectively put 
together to form the network. The interaction network 
diagram of breast cancer related genes with the protein 
indicated the top-ranked PPI hub genes in which the 
connectivity mRNA (red spots)-miRNA (blue)-lncRNA 
(green) (Figure 11). The result of the analysis showed that 
the most frequently expressed lncRNAs were LINC00461 
and MALAT1. Hence from the current study, it can be 
hypothesized that LINC00461 and MALAT1 shall be 
considered as promising therapeutic targets for Breast 
Cancer. 
 
4. Discussion 
Breast cancer is a severe life-threatening disease, stands as 
fifth leading cause of death in both developed and in 
developing countries. India stands first with 70,218 deaths 
in 2012 followed by China and US, reports Globocan,  
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FN1 LRRC15 FHDC1 SPAG5 BUB1 DLGAP5 CXADRP3 FAM64A TDO2 HHIPL2 

SLC7A2 RAG1AP1 A2ML1 KIF20A KIF2C HOXB13 HS6ST3 SKA3 FAM40B GRM4 

CRABP2 NELL2 B4GALNT3 KMO PBK ESM1 GTSE1 FBN2 PRR11 OIP5 

CEACAM6 SOX12 CDK1 CST5 INHBA SRPX AURKB HIST1H4H DQX1 CENPI 

PRLR MBOAT2 PAQR4 GJB2 CEP55 HJURP PYDC1 ESCO2 POLQ C1orf230 

MMP11 TPX2 CCNB1 EZH2 NCAPG CDCA5 MUC13 CCNE2 HOXC11 FAM54A 

CYP2B7P1 C19orf21 NUSAP1 DTL CENPE CASC5 NCAPH DEPDC1 LHX9 ADAMTS19 

UGT2B4 IGSF9 CST1 CDC20 E2F2 KIF14 IYD SDS CDC25C NKX2-2 

GPRC5A CHRNA9 KIF11 ASF1B BUB1B NUF2 BIRC5 CDCA2 SPC25 ASCL1 

NPNT MMP9 CEACAM5 GLIS3 RTKN2 MYCN SHCBP1 ELAVL2 XRCC2 C1orf135 

SQLE S100P LINGO1 CCNA2 AURKA BMP8A TNFSF11 SLC30A8 ARX DNAJC5B 

BAMBI ECT2 FGFR4 CCDC67 CCNB2 PKMYT1 WISP1 C3orf67 SGOL1 ZNF695 

DIO2 ANLN MMP13 DIO1 LOC84740 TTK CDH2 CENPA CLSPN KLK4 

COL11A1 CACNA1H CBS PVALB MMP10 CA9 GAD1 NEURL C6orf154 PPEF1 

TOP2A IQGAP3 EGLN3 UBE2C KIF4A NDC80 CKAP2L SKA1 TRIM72 C6orf223 

DHRS2 FOXM1 RRM2 KIAA1199 FAM83D CGA TROAP CTAG2 PPAPDC1A NEIL3 

CENPF MMP1 ZWINT KIF23 CDC6 NXPH1 OTX1 E2F8 KRT75 LOC645323 

KIAA1244 PCDHB2 MYBL2 NEK2 PPP2R2C TLCD1 DIAPH3 GPRIN1 ULBP1 PAX2 

SLC7A5 SBSN TNNT1 WDR62 LOC387646 HMMR F12 DEPDC1B GAS2L3 AIM1L 

EEF1A2 ASPM SCGN PLK1 UBE2T EXO1 KIF18B HAGHL FAM72D HAPLN1 

COL10A1 KCNK1 KIFC1 HOXC13 ESPL1 DLX5 PHEX LEFTY1 CLEC5A POTEC 

SCUBE3 SIX4 PAX7 CCDC3 FAM5C DNA2 KIAA1211 IBSP E2F7 PAPL 

MKI67 TK1 GDF15 MELK C20orf103 KIF15 PCDHA1 SULT1C3 CCDC87 NMU 

COMP AOC3 CNTNAP2 CYP2C8 KCNG1 HOTAIR ART3 HSD17B6 SPOCD1 EPO 

SYT13 DBNDD1 FUT2 SIM2 MCM10 CDCA3 HORMAD1 TFR2 GABRD SALL4 

SPC24 SYNGR3 
ARHGAP11

A 

DKFZp686

O24166 

      

 

Table 2. The 254 upregulated genes in the tumor samples. 
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TXNIP SLIT3 GHR AKR1C1 GGTA1 DENND2A HBB KLB P2RY14 MARCO 

DCN C10orf116 ANK2 EBF1 IGFBP6 CIDEC SLC19A3 HBA2 C6 AVPR2 

GSN PER1 GPD1 EEPD1 MMRN1 CREB5 TFPI2 HYAL1 SLC22A3 BCHE 

FOS DGAT2 LIMS2 SDPR VSIG4 MRGPRF PDZK1 USHBP1 PHYHIP BMPER 

DUSP1 FHL1 LIPE HSPB6 GPR146 DTX1 NOVA1 ALDH1L1 PLA2G2A EBF2 

ZFP36 ACACB KLF2 GNAI1 PPARG CALB2 CXCL2 MSX1 F10 C2orf89 

SERPINF1 PALMD GYG2 CDKN1C FAM107A FAM89A GPR109A ABCC6 PCK1 ACSM5 

CAV1 LPL TF G0S2 PDE3B CD300LG LGI4 FXYD1 NNAT NAALAD2 

GPX3 DPT CDCA8 NRN1 TMOD1 ANGPT1 CA3 TCEAL7 MYEOV SLC17A7 

SORBS1 SEMA3G GINS1 ADAMTSL4 DPP4 PKDCC LYVE1 AQP7 TMEM88 DMGDH 

CD36 S1PR1 ITGA7 BIN1 CNRIP1 ANGPTL1 GABRE ATOH8 EMX2OS NMUR1 

ANGPTL2 PLIN1 ALPL TMEM37 TUSC5 GRASP MYOM1 ACVR1C CNTFR LRRC2 

FZD4 ADAMTS5 GALNTL2 NPR1 GPR34 RSPO3 CD209 T6GALNAC LGALS12 ABCD2 

SOCS3 KIF26B ISM1 CES1 MRC1 EBF3 KLF15 C1QTNF7 HSD11B1 FOXP2 

PLIN4 ITIH5 CFD AKR1C2 TBX15 KANK3 PCOLCE2 CCDC85A IL6 FNDC5 

LTBP4 GNG11 AKR1C3 LOC654342 MS4A4A NR4A3 HSPB7 CITED1 IGSF1 CHST8 

PDK4 CCDC69 C13orf15 APBB1IP CDO1 TAL1 BHMT2 SLC2A4 LILRB5 FAM3D 

MFAP4 KLF4 CYGB CLDN5 RBP4 HRASLS5 TMEM100 CIDEA MT1M GPR64 

ADH1B ECM2 GYPC EPDR1 PRUNE2 HSPB2 LEP DES BMP2 BANK1 

TNXB RARRES2 PAMR1 PDE2A WISP2 SOX17 TMEM22 ERMN TIMP4 TNNI3K 

ENPP2 APCDD1 MMD SNCG C13orf33 ATP8B4 LRRN4CL RDH5 RRAD KLHL4 

ADIPOQ ALDH1A1 NDN CLEC3B FOLR2 GPIHBP1 PLAC9 MLXIPL GPR109B SCUBE1 

FABP4 PTGER3 ABCC9 BTNL9 PRG4 KCNIP2 NIPSNAP3B ADRB2 P2RY12 SLC25A18 

AKAP12 CHRDL1 GIMAP5 IRAK3 STX11 NMB LRRC70 SCN4A MT1L PYGM 

GPAM FOSB TPPP3 HSPA12B C14orf139 GPR133 TMEM132C AGAP11 PTH1R IQSEC3 

IL17D MAP1LC3C ABCB5 ARHGAP36 AADAC C14orf180 C4orf49 LY6D LMX1A TDRD10 

MYOC GFRA2 SPINK5 SLC14A2 KRT4 EMX2 C2CD4B C8orf34 CCL23 C1QTNF9 

SGK2 ITIH2 CALCR TMEM195 C13orf36 RGS6 GPBAR1 GLYAT SNTG2 FGF10 

ASPA CCBE1 CDR1 ADRA1A SFTPA1 PKHD1L1 MGC45800 MRAP FGB FAM162B 

AQP4 KCNC2 ELOVL3 FRMPD2 FGG PLA2G5 LOC283392 CES4 CPA1 COL25A1 

CYP11A1 PKD1L2 ANGPTL7 MMP27 CSN1S1 SLC1A7 ADH1A CYP4F12 SCG3 APOB 

ANKRD53 CPEB1 GPR97 PAPPA2 LALBA HBA1 TNNT3 HSD17B13 GLRA3 XPNPEP2 

PFKFB1 MPZ FAM166B HAS1 FGA DNAH9 ADRB1 MYH1 MUC7 TNMD 

HIF3A AQPEP KIAA0408 ODF3L1 XAGE1D CCDC141 DMBT1 CSF3 NTS DMRT2 

HEPACAM FAM180B MYO16 CHGB HEPN1 TRHDE CRHBP RASGEF1C NPY5R BMP3 

PRRT4 CNKSR2 PRCD IGFBP1 FRMD1 SFTPB GYS2 CLEC4G C12orf39  

 

Table 3. The 359 downregulated genes in the tumor samples. 

 

Figure 3. Gene Ontology Enrichment graphs in (A) Biological process, (B) Cellular components (C) Molecular functions (D) 

Molecular pathways. 
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Figure 4. Survival plot representing the live (Green) and dead (Red) state of the samples. 

Genes Pvalue Group2 Deaths 
Group2 Deaths 

with Top 

Group2 Deaths 

with Down 

Mean Group2 

Top 

Mean Group2 

Down 

Mean 

Group1 

ABCF1|23 0.03895 2 2 0 12.39 11.468 12.007 

A2M|2 0.05878 2 0 2 16.86 13.821 15.591 

AADAC|13 0.05878 2 0 2 7.2325 0 2.9774 

ABCA1|19 0.05878 2 0 2 12.771 10.652 11.644 

ABCA2|20 0.1573 2 0 2 12.085 11.348 11.775 

ABCA4|24 0.19854 2 0 2 8.685 4.9951 6.7635 

 

Table 4. KM List of genes after survival analysis. 

 

Figure 5. KM analysis of gene (A) ABCF1|23, (B) A2M|2, (C) AADAC|13, (D) ABCA1|19, (E) ABCA2|20 and (F) ABCA4|24. 
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feature

_id 

mean. 

group. 1 

mean. 

group. 2 

Diff mean. 

group.1. 

gr oup.2 

p.value.g

rou 

p.1.grou

p.2 

p. value. 

adj. 

gro up.1. 

group.2 

status. 

group. 1. 

group.2 

Diff 

mean.gro

up.2. 

group.1 

p.value. 

group.2. 

group.1 

p.value. 

adj.grou 

p.2.group.1 

status. 

group. 2. 

group.1 

ID001 56612 5959.83 298.8017 0.85343 0.990319 
Not 

Significant 
-298.82 0.85343 0.990318884 

Not 

Significant 

ID002 5358.42 6447.374 1088.972 0.3935 0.977444 
Not 

Significant 
-1088.97 0.39305 0.977443609 

Not 

Significant 

ID003 6277.774 4941.862 -1335.91 0.24745 0.97744 
Not 

Significant 
1335.912 0.24745 1.977443609 

Not 

Significant 

ID004 6330.645 4827.311 -1503.33 0.27986 0.97744 
Not 

Significant 
1503.334 0.27986 1.977443609 

Not 

Significant 

ID005 5252.913 4950.991 -301.922 1 1 
Not 

Significant 
301.9225 1 1 

Not 

Significant 

ID006 4827.31 5966.27 1138.969 0.52885 0.97744 
Not 

Significant 
-1138.97 0.52885 0.977443609 

Not 

Significant 

ID007 5059.958 4393.714 -666.244 0.52885 0.97744 
Not 

Significant 
666.244 0.52885 0.977443609 

Not 

Significant 

ID008 4277.769 5860.694 1582.925 0.35268 0.97744 
Not 

Significant 
-1582.93 0.35268 0.977443609 

Not 

Significant 

ID177 6832.162 4391.746 -2440.42 0.00389 0.777241 

Hypomethyl

ated in 

group 2 

2440.416 0.00389 0.777241335 
Hypermethyla

ted in group 1 

ID009 5679.338 4807.155 -872.183 0.63053 0.977444 
Not 

Significant 
872.1829 0.63053 0.977443609 

Not 

Significant 

ID010 4451.933 2348.386 -2103.55 0.01469 0.977444 
Not 

Significant 
2103.547 0.01469 0.977443609 

Not 

Significant 

ID011 4679.282 5703.219 1023.937 0.52885 0.977444 
Not 

Significant 
-1023.94 0.52885 0.977443609 

Not 

Significant 

ID012 5218.846 5557.657 338.8109 0.9118 0.990319 
Not 

Significant 
-338.811 0.9118 0.990318836 

Not 

Significant 

 

Table 5. DMR results showing 13 out of 200 probes (Column highlighted shows the Hypermethylated and Hypomethylated probes). 

 

Figure 6. Volcano plot showing differentially methylated regions. 
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Figure 7. PCA plot for DEGs between Normal vs Tumor samples. 

 

Figure 8. Boxplot showing Mean DNA Methylation for 3 groups. 
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Figure 9. Starburst Plot showing DNA Methylation/Expression Relation. 

Figure 10. Oncoprint showing mutations across the top 10 mutated genes. 



CharuMeena et al / Archives of Razi Institute, Vol. 80, No. 2 (2025) 347-360 358 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
WHO (18). The past two decades has led to incredible 
advancement in our understanding of the breast cancer gene 
expression pattern, metabolomics and interactomics (19). 
Breast cancer represents a highly heterogeneous disease 
characterized by various distinct biological entities, each 
with specific pathological features and behaviors. Different 
breast tumor subtypes exhibit unique risk factors, 
histological characteristics, and responses to treatments (20) 
. Non-coding RNAs (ncRNAs) are transcriptionally 
nonfunctional as they lack protein coding function. They 

act as key regulators in cellular processes, such as gene 
expression, cell proliferation, differentiation, and apoptosis. 
The competitive endogenous RNA (ceRNA) is the pool of 
mRNAs, lncRNAs, and other non-coding RNAs sharing 
common MREs with miRNAs. The ceRNA regulation 
hypothesis has been demonstrated to play a significant role 
in cancer development (12) . The current research on 
integrated analysis of cancer data from TCGA database 
using computational methods including data preprocessing, 
normalization and other such analyses such as enrichment 
analysis, probability of survival, prediction of differentially 
methylated regions and differentially expressed genes in 
cancers has been previously reported in Pancreatic cancer 
and colorectal cancer  (21) but unexplored in breast cancer. 
Identification of potential lncRNA biomarkers from 
integrated analysis of long non-coding RNA-associated 
ceRNA network was already proven to be successful in 
previous researches on cancers such as pancreatic cancer 
and ovarian cancer  (10) and human lung adenocarcinoma  
(22). Differential gene expression analyses were performed 
with the sequence count data from TCGA (23) . The 
TCGA biolinks in R/Bioconductor package addresses the 
challenges such as TCGA data retrieval and integration 
with clinical data and other molecular data types like RNA 
and DNA methylation. It offers a guided workflow 
enabling users to query, download, and conduct integrative 
analyses of TCGA data. By combining methodologies 
from computer science and statistics, and incorporating 
techniques from previous TCGA marker studies, TCGA 
biolinks enhances reproducibility and facilitates integrative 
analysis. It leverages various Bioconductor packages to 
foster advancements and expedite novel discoveries (14, 
24). This is an attempt to computationally analyze the 
TCGA cancer data and then evaluate the lncRNAs 
associations to construct ceRNA network in order to 
identify the therapeutic lncRNA biomarkers for breast 
cancer. In a previous study (25), a ceRNA network for 
breast cancer was analyzed with miRNAs but did not relate 
the miRNA expression. Whereas, Zhou et al., (26) 
performed a ceRNA network based on the miRNA–
mRNA combinations. In 2018, Zhou et al. (27) constructed 
four BC-related ceRNA networks with lncRNAs, miRNAs 
and mRNA, but the work did not construct lncRNAs 
prognostic signatures. In our study, we have investigated 
the association of lncRNA in breast cancer thereby identify 
novel lncRNAs as therapeutic targets. Recent reports 
predict the combined frequency of differentially expressed 
lncRNAs with clinical variables of Colorectal Cancer 
(CRC). Two lncRNAs (LINC00400 and LINC00355) in 
ceRNA network has proven to show significant changes in 
multiple colorectal cancer pathological stages thereby 
acting as potential targets for CRC (13)  In the present 
study, differentially expressed genes from the given 
samples were identified by applying the criteria thresholds 
to |log2FC| > 1.5 and FDR-value < 0.01. The results 
identified 352 lncRNAs, 183 miRNAs and 254mRNAs 
with aberrant expression in breast cancer. Out of the total 

Protein coding genes

miRNAs

Long noncoding genes

 

Figure 11. Competitive endogenous RNA network. 
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352 lncRNAs, some lncRNAs were found to be commonly 
shared among the mRNAs. From these, LINC00461 and 
MALAT1 lncRNAs can be considered as targets for breast 
cancer as the interactions were common with mRNAs. In 
conclusion, we utilized breast cancer RNA-Seq data from 
TCGA and conducted comprehensive computational 
analyses using R programming. Visual and logical 
inference was drawn from the results of each analysis. A 
total of 613 genes were identified as differentially expressed 
among the samples, with 254 genes upregulated and 359 
genes downregulated. These differentially expressed genes, 
identified using the TCGA biolinks package were 
subsequently used to construct a ceRNA network, bridging 
the initial and subsequent parts of the study. From the 
results using TCGA biolinks, 352 lncRNAs, 183 miRNAs 
and 254 mRNAs were found to show aberrant expression 
in the studied breast cancer samples. Notably, among the 
352 lncRNAs, LINC00461 and MALAT1 emerged as 
consistently and prominently expressed lncRNAs and 
found that their regulated miRNA target genes are enriched 
in the samples. 
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