Beven K, Kirkby N. 1979. A physically based, variable contributing area model of basin hydrology. Hydrology Science Bulletin. 24 (1): 43–69. https://doi.org/10.1080/02626667909491834
Bidwell OW. 1989. Soil fertility and organic matter as critical components of production systems. Soil Survey Horizons. 30(3): 77-79. https://doi.org/10.2136/sh1989.3.0077
Bouma J, Mcbratney AB. 2013. Framing soils as an actor when dealing with wicked environmental problems. Geoderma. 200–201:130–139. https://doi.org/10.1016/j.geoderma.2013.02.011
Esadafal R, Girard MC, Courault D. 1989. Munsell soil color and soil reflectance in the visible spectral bands of landsat MSS and TM data. Remote Sensing of Environment. 27 (1): 37-46. https://doi.org/10.1016/0034-4257(89)90035-7
Florinsky IV, Eilers RG, Manning GR, Fuller LG. 2002. Prediction of soil properties by digital terrain modelling. Environmental Modelling and Software. 17(3):295-311. https://doi.org/10.1016/S1364-8152(01)00067-6
Floyd FJ, Widaman KF. 1995. Factor analysis in the development and refinement of clinical assessment instruments. Psychological Assessment. 7(3): 286-299. https://doi.org/10.1037/1040-3590.7.3.286
Franklin J, McCullough P, Gray C. 2000. Terrain variables used for predictive mapping of vegetation communities in Southern California. In Wilson J, Gallant J (Eds) Terrain Analysis: Principles and Applications. Wiley. New York. Chichester. Toronto and Brisbane. pp. 331-353. https://www.researchgate.net/publication/43289817
Jafari A, Sefidi H, Rahime M. 2023. Investigating the relationship between spatial changes of soil carbon deposition with climatic elements of temperature and precipitation in recent years (Ahangaran Basin study area). Journal of Climate Change Research. 3 (12):1-20. (InPersian). https://doi.org/10.30488/ccr.2022.365475.1100
Jafariyan Z, Tayefeh L, Alikhani S and Tamartash R. 2012. Investigation of carbon storage potential of Artemisia aucheri, Agropyron elongatum, Stipa barbata, in Semi-arid Rangelands of Iran (Case study: Peshert Region Kiasar). Journal of Range and Watershed Management. 65(2):191-202. (In Persian). https://doi.org/10.22059/jrwm.2012.30011
Kaiser HF. 1960. The application of electronic computers to factor analysis. Educational and Psychological Measurement. 20. 141-151. https://doi.org/10.1177/001316446002000116
Kamali N, Sadeghipour A. 2016. Determining the most important factors related to carbon storage in different land uses (Case study: Shahriar, Iran). Watershed Management Research (Pajouhesh & Sazandegi). 111: 2-8. (In Persian). https://doi.org/10.22092/wmej.2016.112319
Khalifehzadeh R, Tamartash RM, Tatian R, Sarajian Maralan MR. 2018. An estimation of topsoil organic carbon by combining factor analysis and multiple regression in semi-steppe rangelands of Lazour, Firouzkooh. Iranian Journal of Range and Desert Research. 25 (3): 699-712. (In Persian). https://doi.org/10.22092/ijrdr.2018.117819
Ma H, Peng M, Yang Z, Yang K, Zhao C, Li K, Guo F, Yang Z, Cheng H. 2024. Spatial distribution and driving factors of soil organic carbon in the Northeast China Plain: Insights from latest monitoring data. Science of The Total Environment. 911. https://doi.org/10.1016/j.scitotenv.2023.168602
Mirzashahi k, Bazargan k. 2015. Soil organic matter management. Soil and Water Research Institute. Technical Publication 535. (InPersian). https://doi.org/10.1016/j.scitotenv.2023.168602
Mondal A, Khare D, Kundu S, Mondal S, Mukherjee S, Mukhopadhyay A. 2017. Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data. The Egyptian Journal of Remote Sensing and Space Sciences. 20(1): 61-70. https://doi.org/10.1016/j.ejrs.2016.06.004
Mulder VL, Bruin SD, Schaepman ME, Mayr TR. 2011. The use of remote sensing in soil and terrain mapping: A review. Geoderma. 162 (1): 1-19. https://doi.org/10.1016/j.geoderma.2010.12.018
Nateghi S, Khalifehzadeh R, Souri M, Khodagholi M. 2021. Spatial prediction of soil surface organic carbon using spectral and non-spectral factors (Case study; Asuran Summer Rangeland, Semnan Province). Journal of Range and Watershed Management. 4 (1): 177-188. (In Persian). https://doi.org/10.22059/jrwm.2021.313256.1547
Olaya V. 2009. Basic land-surface parameters. Geomorphometry Concepts, Software, Applications. Developments in Soil Science. 33: 141-169. https://doi.org/10.1016/S0166-2481(08)00006-8
Piccini C, Marchetti A, Francaviglia R. 2014. Estimation of soil organic matter by geostatistical methods: use of auxiliary information in agriculture and environment assessment. Ecological Indicators. 36: 301-314. https://doi.org/10.1016/j.ecolind.2013.08.009
Rousta MJ, Pakparvar M, Soleimanpour SM, Enayati M. 2022. The role of land use and physical properties on soil organic carbon in the flood spreading fields of Kowsar Station. Watershed Management Research. 34-4(133): 35-149. (In Persian). https://doi.org/10.22092/WMRJ.2021.355443.1426
Saha D, Kukal S, Sharma S. 2011. Landuse impacts on SOC fractions and aggregate stability in typic us ochrepts of Northwest India. Plant Soil. 339: 457– 470. https://doi.org/10.1007/s11104-010-0602-0
Schwanghart W, Jarmer T. 2011. Linking spatial patterns of soil organic carbon to topography: A case study from south-eastern Spain. Geomorphology. 126(1): 252-263. https://doi.org/10.1016/j.geomorph.2010.11.008
Stevenson FJ. 1994. Humus Chemistry: Genesis, Composition, Reactions. Second Edition. John Wiley and Sons Pub. 505 p. https://doi.org/10.1021/ed072pA93.6
Tamartash R, Tatian MR, Yousefian M. 2012. The ability of different vegetative forms to carbon sequestration in plain rangeland of Miankaleh. Journal of Environmental Studies. 38 (62):45-54. (In Persian). https://doi.org/ 10.22059/jes.2012.29099
Torkamani F, Piri Sahragard H, PahlavanRad MR, Nohtani M. 2020. Determination of soil organic carbon distribution along with affecting factors using random forest model in Ravang Minab watershed. Agricultural Engineering. 42(4): 89-104. (In Persian). https://doi.org/10.22055/agen.2020.29872
Wang Q, Shan Y, Shi W, Zhao F, Li Q, Sun P Wua Y. 2024. Assessing spatiotemporal variations of soil organic carbon and its vulnerability to climate change: A bottom-up machine learning approach. Climate Smart Agriculture. 1 (100025): 1-9. https://doi.org/10.1016/j.csag.2024.100025
Wang Y, Fu B, Lü Y, Song C, Luan Y. 2010. Local-scale spatial variability of soil organic carbon and its stock in the hilly area of the Loess Plateau, China. Quaternary Research. 73(1):70-76. https://doi.org/10.1016/j.yqres.2008.11.006
Xiaoguang N, Shaoliang Z, Chengbo Z, Pengke Y, Hao W, Weitao X, Mingke S, Muhammad A. 2024. Key factors influencing the spatial distribution of soil organic carbon and its fractions in Mollisols. Catena. 247: (10) 108522. https://doi.org/10.1016/j.catena.2024.108522
Yu H, Zha T, Zhang X, Nie L, Ma L, Pan Y. 2020. Spatial distribution of soil organic carbon may be predominantly regulated by topography in a small revegetated watershed. CATENA.188: (9).104459. https://doi.org/10.1016/j.catena.2020.104459
Zhang P, Wang Y, Sun H, Qi L, Liu H, Wang Z. 2021. Spatial variation and distribution of soil organic carbon in an urban ecosystem from high-density sampling. Catena. 204 (9): 105364. https://doi.org/10.1016/j.catena.2021.105364