This research investigated the wet yield and periodic evapotranspiration of maize (Zea mays L. Var. Sc. 704), under the influence of different amounts of water and fertilizer. A two-factor factorial experiment was conducted in the form of randomized complete block design in two crop years, 2020 and 2021, in Aliabad Fashapuyeh District, Hasanabad Division, Ray County (Tehran Province). Water treatments included three levels of W0, W1, and W2 and three levels of fertilizer, F0, F1 and F2, which were carried out by supplying 100%, 75% and 50% of water requirement based on soil moisture deficiency and fertilizer was based on soil test for macro-nutrients of fodder corn, respectively. The results showed that, along with the increase in water and fertilizer stress, the two-year average amount of yield and applied water (total evapo-transpiration) decreased by 27.6% and 46.8%, respectively, so that the yield decreased from 50.4 to 36.5 t/ha and applied water decreased from 694 to 369 mm. The simple and interactive effects of treatments on yield and periodic applied water were significant at the 95% probability level. The results of modeling the relative yield of the crop based on periodic relative ET values indicate the suitability of Singh's sum-able and Rao's multiplicative model in the conditions of water and fertilizer stress. In total, the results showed that the production of fodder corn was firstly dependent on the volume of irrigation water and then on the supply of nutrients. The highest biological yield after the control treatment (W0F0) was related to the application of the W0F1 treatment. Also, a positive and significant correlation between the total evapotranspiration with the yield (R=0.94) was proved. On the other hand, no significant yield difference was observed between the three treatments W1F0, W1F1 and W1F2. Therefore, in the condition of irrigation water shortage, the W1F2 treatment is more economical than the other treatments. W1 and the square root production function with RMSE, R2 and NS statistics of 0.42, 0.98 and 0.97, respectively, is a more suitable function for estimating yield with water and fertilizer consumption compared to the functions of Logistics and Cobb Douglas. It was found that, in the conditions of inadequate water and macro nutrients, not only ET of different stages of growth can be increased by management of fertilizer consumption, but also plant performance was completely dependent on the correct management of water and fertilizer consumption. |
- زرگریعقوبی، فرامرز، سرائی تبریزی، مهدی، محمدی ترکاشوند، علی، اسفندیاری، مهرداد و رمضانیاعتدالی، هادی، 1401. ارزیابی اثر تنشهای توأمان آبی و شوری در برآورد عملکرد بیولوژیکی ذرت علوفهای از طریق تبخیر و تعرق دورهای. نشریه آب و خاک، 36 (6). صص. 693-677.
- سپهری، علی، مدرسثانوی، علی محمد، قرهیاضی، بهزاد، و یمینی، یدالّه، 1381. تأثیر تنش آب و مقادیر مختلف نیتروژن بر مراحل رشد و نمو، عملکرد و اجزاء عملکرد ذرت. نشریه علوم زراعی ایران. 4 (3). صص. 201-184.
- سرائی تبریزی، مهدی، بابازاده، حسین، همائی، مهدی، کاوه، فریدون، و پارسی نژاد، مسعود، 1395. توسعه و ارزیابی چند مدل اشتقاقی برای مدلسازی تنش توأم کمبود و نیتروژن. نشریه دانش آب و خاک، 26(3). صص. 299-287.
- فرحبخش، مهشاد، سرائی تبریزی، مهدی، و بابازاده، حسین، 1398. برآورد نیاز آبی گیاه ریحان برای مدیریت آب در مزرعه. پژوهش آب در کشاورزی، 33(1). صص. 66-53.
- بابازاده، حسین، و سرائیتبریزی، مهدی، 1396. مدلسازی واکنش گیاهان به تنشهای محیطی (تئوری و عملی). انتشارات دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، 187 صفحه.
- Arif, M., Marwat, K.B. and Khan, M.A., 2007. Effect of tillage and zinc application methods on weeds and yield of maize. Pakistan Journal of Botany, 39(5), pp.1583–1591.
- Allen, R.G., Pereira, L.S., Raes, D. and Smith, M., 1998. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56, pp.1–326.
- Babazadeh, H., Sarai Tabrizi, M. and Homaee, M., 2017. Basil root water uptake derived models under combined water and nitrogen deficit conditions. Irrigation and Drainage, 66(3), pp.377–386. https://doi.org/10.1002/ird.2104
- Farahbakhsh, M., Sarai Tabrizi, M. and Babazadeh, H., 2023. Determining basil production functions under simultaneous water, salinity, and nitrogen stresses. Applied Water Science, 13(68), pp.1–12. https://doi.org/10.1007/s13201-022-01849-3
- Gassman, P.W., Reyes, M.R., Green, C.H. and Arnold, J.G., 2007. The soil and water assessment tool: historical development, applications, and future research directions. Transactions of the ASABE, 50(4), pp.1211–1250. doi: 10.13031/2013.23637
- Hao, X., Chang, C. and Lindwall, C.W., 2001. Tillage and crop sequence effects on organic carbon and total nitrogen content in an irrigated Alberta soil. Soil and Tillage Research, 62(3–4), pp.167–169. https://doi.org/10.1016/S0167-1987(01)00222-7
- Izaurralde, R.C., Feng, Y., Robertson, J.A., McGill, W.B., Juma, N.G. and Olson, B.M., 1995. Long-term influence of cropping systems, tillage methods, and N sources on nitrate leaching. Canadian Journal of Soil Science, 75(4), pp.497–505.
https://doi.org/10.4141/cjss95-071
- Jamieson, P.D., Porter, J.R. and Wilson, D.R., 1991. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Research, 27(4), pp.337–350. https://doi.org/10.1016/0378-4290(91)90040-3
- Moser, S.B., Feil, B., Jampatong, S. and Stamp, P., 2006. Effects of pre-anthesis drought, nitrogen fertilizer rate, and variety on grain yield, yield components, and harvest index of tropical maize. Agricultural Water Management, 81(1–2), pp.41–58. https://doi.org/10.1016/j.agwat.2005.04.005
- Moles, T.M., Pompeiano, A., Reyes, T.H., Scartazza, A. and Guglielminetti, L., 2016. The efficient physiological strategy of tomato landrace in response to short-term salinity stress. Plant Physiology and Biochemistry, 109, pp.262–272.
https://doi.org/10.1016/j.plaphy.2016.10.008
- Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models, part I—A discussion of principles. Journal of Hydrology, 10(3), pp.282–290. https://doi.org/10.1016/0022-1694(70)90255-6
- Patil, S.L. and Sheelavantar, M.N., 2006. Soil water conservation and yield of winter sorghum (Sorghum bicolor L. Moench) as influenced by tillage, organic materials, and nitrogen fertilizer in semi-arid tropical India. Soil and Tillage Research, 89(2), pp.246–257. https://doi.org/10.1016/j.still.2005.07.013
- Roberts, R.K., Howard, D.D., Gwathmey, C.O. and Sleigh, D.E., 1999. Economics of broadcast and injected nitrogen on no-till cotton produced at three locations in Tennessee. Journal of Cotton Science.
- Zargar Yaghoubi, F., Sarai Tabrizi, M., Mohammadi Torkashvand, A., Esfandiari, M. and Ramezani Etedali, H., 2024. The effects of drought, and salinity on KS and RAW managerial coefficients in the efficient water management in maize farms. Applied Water Science, 14(8), p.177. https://doi.org/10.1007/s13201-024-02229-9
- Zorita, M.D., 2000. Effect of deep-tillage and nitrogen fertilization interactions on dryland corn (Zea mays L.) productivity. Soil and Tillage Research, 54(1–2), pp.11–19. https://doi.org/10.1016/S0167-1987(99)00100-2
- Zotarelli, L., Dukes, M.D., Scholberg, J.M.S., Muñoz-Carpena, R. and Icerman, J., 2009. Tomato nitrogen accumulation and fertilizer use efficiency on sandy soil, as affected by nitrogen rate and irrigation scheduling. Agricultural Water Management, 96(8), pp.1247–1258. https://doi.org/10.1016/j.agwat.2009.03.019
|