- Ahmad, F., Ahmad, I., and Sahirkhan, M.2005. Indoleacetic acid production by indigenous isolates of Azotobacter and fluorescent pseudomonas in the presence and absence of tryptophan. Turk. J. Biol. 29: 29-34.
- Alexander, D. B., & Zuberer, D. A. 1991. Use of chrome azurol S reagents to evaluate siderophores production by rhizosphere bacteria. Biology and Fertility of soils, 12, 39-45. https://doi.org/10.1007/BF00369386.
- Aleksandrow, V.G. Blagodyr, R.N. and Iiiev, I.P., 1967. Liberation of phosphoric acid from apatite by silicate bacteria. Mikrobiolohichnyi zhurnal, 29, 111-114.
- Belimov, A.A., Dodd, I.C., Safronova, V.I., Shaposhnikov, A.I., Azarova, T.S., Makarova, N.M., Davies, W.J. and Tikhonovich, I.A., 2015. Rhizobacteria that produce auxins and contain 1‐amino‐cyclopropane‐1‐carboxylic acid deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well‐watered and water‐limited potato (Solanum tuberosum). Annals of Applied Biology, 167(1), pp.11-25. https://doi.org/10.1111/aab.12203
- Dobbelaere, S., Vanderleyden, J. and Okon, Y., 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical reviews in plant sciences, 22(2), pp.1071. https://doi.org/10.1080/713610853
- Egamberdiyeva, D. and Höflich, G., 2002. Root colonization and growth promotion of winter wheat and pea by Cellulomonas spp. At different temperatures. Plant Growth Regulation, 38, pp.219-224. https://doi.org/10.1023/A:1021538226573
- Ehmann, A. 1977. The Van Urk-Salkowski reagent-a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of Chromatography. 132, 267-276. https://doi.org/10.1016/S0021-9673(00)89300-0
- Ghosh, S., Mondal, S., Banerjee, S., Mukherjee, A. and Bhattacharyya, P., 2023. Temporal dynamics of potassium release from waste mica as influenced by potassium mobilizing bacteria. J Pure Appl Microbiol, 17(1). https://doi.org/10.22207/JPAM.17.1.17
- Glick, B.R., 2015. Beneficial plant-bacterial interactions (Vol. 243). Heidelberg: Springer. https://doi.org/10.1007/978-3-319-13921-0
- Goswami, S.P., Maurya, B.R., Dubey, A.N. and Singh, N.K., 2019. Role of phosphorus solubilizing microorganisms and dissolution of insoluble phosphorus in soil. International Journal of Chemical Studies, 7(3), pp.3905-3913.
- Jalali, M., 2006. Kinetics of non-exchangeable potassium release and availability in some calcareous soils of western Iran. Geoderma, 135, pp.63-71. https://doi.org/10.1016/j.geoderma.2005.11.006
- Jeon, J.S., Lee, S.S., Kim, H.Y., Ahn, T.S. and Song, H.G., 2003. Plant growth promotion in soil by some inoculated microorganisms. The Journal of Microbiology, 41(4), pp.271-276.
- Johnston, A. E., Poulton, P. R., Goulding, K. W., Macdonald, A. J., & Glendining, M. J. 2016. Potassium management in soils and crops: A review. In Proceedings of the International Fertiliser Society, 792:52 p
- Kepert, D.G., Robson, A.D. and Posner, A.M., 1979. The effect of organic root products on the availability of phosphorus to plants. In The soil-root interface (pp. 115-124). Academic Press. https://doi.org/10.1016/B978-0-12-325550-1.50015-X
- Khalid, A., Arshad, M. and Zahir, Z.A., 2004. Screening plant growth‐promoting rhizobacteria for improving growth and yield of wheat. Journal of applied microbiology, 96(3), pp.473-480. https://doi.org/10.1046/j.1365-2672.2003.02161.x
- Khalil, A.A., Fetyan, N.A. and Hemeid, N.M., 2010. Effect of Bacillus circulans and Azotobacter chroococcum inoculation on potato roduction in presence of different mineral potassium sources. Journal of Agricultural Chemistry and Biotechnology, 1(9), pp.471-483. https://doi.org/10.21608/jacb.2010.90059
- Khosravi, H., Khoshru, B., Nosratabad, A.F. and Mitra, D., 2024. Exploring the landscape of biofertilizers containing plant growth-promoting rhizobacteria in Iran: progress and research prospects. Current Research in Microbial Sciences, p.100268. https://doi.org/10.1016/j.crmicr.2024.100268
- Kinabo, J.O.Y.C.E. and SALAAM, D., 2015. Role of potassium in human and animal nutrition. In First National Potash Symposium Dares Salaam.
- Kloepper, J.W., Lifshitz, R. and Zablotowicz, R.M., 1989. Free-living bacterial inocula for enhancing crop productivity. Trends in biotechnology, 7(2), pp.39-44. https://doi.org/10.1016/0167-7799(89)90057-7
- Kumar, P., Kumar, T., Singh, S., Tuteja, N., Prasad, R. and Singh, J., 2020. Potassium: A key modulator for cell homeostasis. Journal of Biotechnology, 324, pp.198-210. https://doi.org/10.1016/j.jbiotec.2020.10.018
- Kundu, B.S. and Gaur, A.C., 1980. Establishment of nitrogen-fixing and phosphate-solubilising bacteria in rhizosphere and their effect on yield and nutrient uptake of wheat crop. Plant and soil, 57, pp.223-230. https://doi.org/10.1007/BF02211682
- Mengel, K., Kirkby, E.A., Kosegarten, H. and Appel, T., 2001. The soil as a plant nutrient medium. Principles of plant nutrition, pp.15-110. https://doi.org/10.1007/978-94-010-1009-2_2
- More, T.T., Yadav, J.S.S., Yan, S., Tyagi, R.D. and Surampalli, R.Y., 2014. Extracellular polymeric substances of bacteria and their potential environmental applications. Journal of environmental management, 144, pp.1-25. https://doi.org/10.1016/j.jenvman.2014.05.010
- https://doi.org/10.1002/1522-2624(200008)163:4<393::AID-JPLN393>3.3.CO;2-N
- Naseem, H., Ahsan, M., Shahid, M.A. and Khan, N. 2018. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Journal of basic microbiology.58 (12): 1009-1022. https://doi.org/10.1002/jobm.201800309
- Nautiyal, C.S., 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS microbiology Letters, 170(1), pp.265-270. https://doi.org/10.1016/S0378-1097(98)00555-2
- O'sullivan, D.J. and O'Gara, F., 1992. Traits of fluorescent Pseudomonas involved in suppression of plant root pathogens. Microbiological reviews, 56(4), pp.662- https://doi.org/10.1128/MMBR.56.4.662-676.1992
- Patten, C.L. and Glick, B.R., 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and environmental microbiology, 68(8), pp.3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
- Pikovskaya, R., 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17: 362-370. Plant Soil, 287, pp.77-84.
- Radwanski, E.R. and Last, R.L. 1995. Tryptophan biosynthesis and metabolism: biochemical and molecular genetics. The Plant Cell, 7(7), p.921. https://doi.org/10.2307/3870047
- Rafi, M.M., Krishnaveni, M.S., and Charyulu, P. 2019. Phosphate-solubilizing microorganisms and their emerging role in sustainable agriculture. In V. Buddolla Ed., Recent Developments in Applied Microbiology and Biochemistry pp. 223-233. [https://doi.org/10.1016/B978-0-12-816328-3.00017-9
- Rashid, M., Khalil, S., Ayub, N., Alam, S. and Latif, F., 2004. Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak J Biol Sci, 7(2), pp.187-196. https://doi.org/10.3923/pjbs.2004.187.196
- Sandhya, V.Z.A.S., Grover, M., Reddy, G. and Venkateswarlu, B. 2009. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biology and fertility of soils. 46(1):17-26. https://doi.org/10.1007/s00374-009-0401-z
- Sarwar, M. and Frankenberger, W.T., 1994. Influence of L-tryptophan and auxins applied to the rhizosphere on the vegetative growth of Zea mays L. Plant and Soil, 160, pp.97-104. https://doi.org/10.1007/BF00150350
- Sarwar, M., 1993. Microbial production of auxins in soil and their influence on plant growth. University of California, Riverside.
- Sarwar, M., Arshad, M., Martens, D.A. and Frankenberger, W.T., 1992. Tryptophan-dependent biosynthesis of auxins in soil. Plant and Soil, 147, pp.207-215. https://doi.org/10.1007/BF00029072
- Scavino, A.F. and Pedraza, R.O., 2013. The role of siderophores in plant growth-promoting bacteria. In Bacteria in agrobiology: crop productivity (pp. 265-285). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-37241-4_11
- Sharma, S.B., Sayyed, R.Z., Trivedi, M.H. and Gobi, T.A., 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, pp.1-14. https://doi.org/10.1186/2193-1801-2-587
- Silva, L.I.D., Pereira, M.C., Carvalho, A.M.X.D., Buttrós, V.H., Pasqual, M. and Dória, J., 2023. Phosphorus-solubilizing microorganisms: a key to sustainable agriculture. Agriculture, 13(2), p.462. https://doi.org/10.3390/agriculture13020462
- Sindhu, S.S., Parmar, P., Phour, M. and Sehrawat, A., 2016. Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. Potassium solubilizing microorganisms for sustainable agriculture, pp.171-185. https://doi.org/10.1007/978-81-322-2776-2_13
- Skvortsov, I.M. and Ignatov, V.V. 1998. Extracellular polysaccharides and polysaccharide-containing biopolymers from Azospirillum species: properties and the possible role in interaction with plant roots. FEMS microbiology letters, 165(2): 223-229. https://doi.org/10.1111/j.1574-6968.1998.tb13150.x
- Staswick, P.E., 2009. The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant physiology, 150(3), pp.1310-1321. https://doi.org/10.1104/pp.109.138529
- Sundara, B., Natarajan, V. and Hari, K., 2002. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field crops research, 77(1), pp.43-49. https://doi.org/10.1016/S0378-4290(02)00048-5
- Torres-Rubio, M.G., Valencia-Plata, S.A., Bernal-Castillo, J. and Martínez-Nieto, P., 2000. Isolation of Enterobacteria, Azotobacter sp. and Pseudomonas sp., producers of indole-3-acetic acid and siderophores, from Colombian rice rhizosphere. Revista Latinoamericana de Microbiología, 42(4), pp.171-176.
- Yousuf, S., Naqash, N. and Singh, R., 2022. Nutrient Cycling: An Approach for Environmental Sustainability. Environmental Microbiology: Advanced Research and Multidisciplinary Applications; Bentham Science Publisher: Sharjah, United Arab Emirates, p.77. https://doi.org/10.2174/9781681089584122010007
- Zhao, Y., 2012. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Molecular plant, 5(2), pp.334-338. https://doi.org/10.1093/mp/ssr104
|