- Aboobucker S.I., Suza W.P. Why do plants convert sitosterol to stigmasterol?. Front. Plant Sci. 2019; 10:354. https://doi.org/10.3389/fpls.2019.00354.
- Addai Z.R., Abood M.S., Hlail S.H. GC-MS profiling, antioxidants and antimicrobial activity of prickly pear (Opuntiaficus-indica) pulp extract. Pharmacogn J.2022; 14(2):262-267.
- Ahrazem O., Rubio-Moraga A., Nebauer S.G., Molina R.V., Gomez-Gomez L. Saffron: its phytochemistry, developmental processes, and biotechnological prospects. J. Agric. Food Chem. 2015; 63(40):8751-64. 10.1021/acs.jafc.5b03194.
- Anastasaki E., Kanakis C., Pappas C., Maggi L., Del Campo C.P., Carmona M., Alonso G.L., Polissiou M.G. Geographical differentiation of saffron by GC–MS/FID and chemometrics. Eur. Food Res. Technol. 2009;229:899-905.
- Asil H. GC-MS analysis of volatile components of Safranbolu and Kirikhan saffron (Crocus sativus L.) prepared by ultrasonic extraction. Fresenius Environ. Bull. 2018: 9557-9563 10.1021/acs.jafc.5b03194.
- Baba S.A., Malik A.H., Wani Z.A., Mohiuddin T., Shah Z., Abbas N., Ashraf N. Phytochemical analysis and antioxidant activity of different tissue types of Crocus sativus and oxidative stress alleviating potential of saffron extract in plants, bacteria, and yeast. S Afr J Bot .2015; 99:80-7. https://doi.org/10.1016/j.sajb.2015.03.194.
- Caballero-Ortega H., Pereda-Miranda R., Riverón-Negrete L., Hernández J.M., Medécigo-Ríos M., Castillo-Villanueva A., Abdullaev F.I. Chemical composition of saffron (Crocus sativus L.) from four countries. Acta horticulturae. 2004:321-6. https://doi.org/10.1007/s12010-022-03984-8.
- Cirillo N.A., Quirrenbach C.G., Corazza M.L., Voll F.A. Enzymatic kinetics of cetyl palmitate synthesis in a solvent-free system. Biochem. Eng. J. 2018; 137:116-24. 10.1016/j.bej.2018.05.021
- Drioiche A., Ailli A., Handaq N., Remok F., Elouardi M., Elouadni H., Al Kamaly O., Saleh A., Bouhrim M., Elazzouzi H., El Makhoukhi F. Identification of Compounds of Crocus sativus by GC-MS and HPLC/UV-ESI-MS and Evaluation of Their Antioxidant, Antimicrobial, Anticoagulant, and Antidiabetic Properties. J. Pharm. 2023; 16(4):545. https://doi.org/10.3390/ph16040545.
- Falahatpishe H., Mazloumi M.T., Komili Phonoud R. Seyed Ahmadian F. Chromatography method (HPLC) for determination of saffronol as quality characteristic of Iranian saffron and comparison with spectrophotometry method. J. Food Sci. Tech. 2004; 1(3): 57-66.
- Fan J.C., Ren R., Jin Q., He H.L., Wang S.T. Detection of 20 phthalate esters in breast milk by GC-MS/MS using QuEChERS extraction method. Food Addit. Contam: Part A. 2019; 36(10):1551-8. 10.1080/19440049.2019.1646435.
- Gomathi D., Kalaiselvi M., Ravikumar G., Devaki K., Uma C. GC-MS analysis of bioactive compounds from the whole plant ethanolic extract of Evolvulus alsinoides (L.) L. JFST. 2015; 52:1212-7. 10.1007/s13197-013-1105-9.
- Habib M.R., Karim M.R. Antimicrobial and cytotoxic activity of di-(2-ethylhexyl) phthalate and anhydrosophoradiol-3-acetate isolated from Calotropis gigantea (Linn.) flower. Mycobiology. 2009;37(1):31-6. 10.4489/MYCO.2009.37.1.031.
- Hadizadeh F., Mahdavi M., Emami S.A., Khashayarmanesh Z., Hassanzadeh M., Asili J., Seifi M., Nassirli H., Shariatimoghadam A., Noorbakhsh R. Evaluation of ISO method in saffron qualification. InII Int Symposium on Saffron Biol Technol 739. 2006; 28: 405-410.
- Hoshyar R., Bathaie S.Z., Etemadikia B. Quantitative and comparative analysis of major metabolites (crocin, picrocrocin and safranal) in different packages of Iranian saffron by HPLC. Pathobio. Res. 2010; 13(2):63-71.http://mjms.modares.ac.ir/article-30-1974-en.html.
- Huang L., Zhu X., Zhou S., Cheng Z., Shi K., Zhang C., Shao H. Phthalic acid esters: Natural sources and biological activities. Toxins. 2021; 13(7):495. 10.3390/toxins13070495.
- Kametani T., Furuyama H. Synthesis of vitamin D3 and related compounds. Med. Res. Rev. 1987;7(2):147-71.10.1002/med.2610070202.
- Kangsamaksin T., Chaithongyot S., Wootthichairangsan C., Hanchaina R., Tangshewinsirikul C., Svasti J. Lupeol and stigmasterol suppress tumor angiogenesis and inhibit cholangiocarcinoma growth in mice via downregulation of tumor necrosis factor-α. PloS one. 2017;12:12(12):e0189628. https://doi.org/10.1371/journal.pone.0189628.
- Kavitha A., Prabhakar P., Vijayalakshmi M., Venkateswarlu Y. Production of bioactive metabolites by Nocardia levis MK‐VL_113. J. Appl. Microbiol. 2009;49(4):484-90. 10.1111/j.1472-765X.2009.02697.x.
- Kumari N., Menghani E., Mithal R. GCMS analysis & assessment of antimicrobial potential of rhizospheric Actinomycetes of AIA3 isolate. Indian J. Tradit. Knowl. (IJTK). 2019; 19(1):111-9. 10.56042/ijtk.v19i1.30849.
- Lage M., Cantrell C.L. Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Sci Hortic. 2009; 121(3):366-73. https://doi.org/10.1016/j.scienta.2009.02.017.
- Li N., Lin G., Kwan Y.W., Min ZD. Simultaneous quantification of five major biologically active ingredients of saffron by high-performance liquid chromatography. J Chromatogr. A. 1999; 849(2):349-55. 10.1016/s0021-9673(99)00600-7.
- Liu M., Li S. Nitrile biosynthesis in nature: how and why?. Nat. Prod. Rep. 2024; 41(4):649-71. https://doi.org/10.1039/d3np00028a.
- Lotfy M.M., Hassan H.M., Hetta M.H., El-Gendy A.O., Mohammed R. Di-(2-ethylhexyl) Phthalate, a major bioactive metabolite with antimicrobial and cytotoxic activity isolated from River Nile derived fungus Aspergillus awamori. J. Basic Appl. Sci. 2018;7(3):263-9. https://doi.org/10.1016/j.bjbas.2018.02.002.
- Magdouli S., Daghrir R., Brar S.K., Drogui P., Tyagi R.D. Di 2-ethylhexylphtalate in the aquatic and terrestrial environment: a critical review. J. Environ. Manage. 2013; 127:36-49. https://doi.org/10.1016/j.jenvman.2013.04.013.
- Moraga Á.R., Rambla J.L., Ahrazem O., Granell A., Gómez-Gómez L. Metabolite and target transcript analyses during Crocus sativus stigma development. phytochem. 2009; 70(8):1009-16. 10.1016/j.phytochem.2009.04.022.
- Mosaviniya M., Kikhavani T., Tanzifi M., Yaraki M.T., Tajbakhsh P., Lajevardi A. Facile green synthesis of silver nanoparticles using Crocus Haussknechtii Bois bulb extract: Catalytic activity and antibacterial properties. Colloids Interface Sci. Commun. 2019;33:100211. https://doi.org/10.1016/j.colcom.2019.100211.
- Mousavi S.M., Khoshkam M., Feizi J. Comparison of metabolic profile in different saffron samples based on their geographical origin using gas chromatography-mass spectroscopy techniques (GC-MS). Saffron Agron Technol. 2021; 9(2):177-191. https://doi.org/10.22048/jsat.2021.245568.1408.
- Mutlu V.N., Yilmaz S. Esterification of cetyl alcohol with palmitic acid over WO3/Zr-SBA-15 and Zr-SBA-15 catalysts. Appl. Catal. A-Gen. 2016; 522:194-200. https://doi.org/10.1016/j.apcata.2016.05.010.
- Mykhailenko O., Kovalyov V., Goryacha O., Ivanauskas L., Georgiyants V. Biologically active compounds and pharmacological activities of species of the genus Crocus: A review. Phytochem. 2019; 162:56-89. https://doi.org/10.1016/j.phytochem.2019.02.004.
- Namayandeh A., Nemati Z., Kamelmanesh M.M., Mokhtari M., Mardi M. Genetic relationships among species of Iranian crocus (Crocus spp.). Crop Breed. 2013; 3(1): 61-67. 10.22092/CBJ.2013.100451.
- Nanda S., Madan K. The role of Safranal and saffron stigma extracts in oxidative stress, diseases and photoaging: A systematic review. Heliyon. 2021;7(2). https://doi.org/10.1016/j.heliyon.2021.e06117.
- Newill H., Loske R., Wagner J., Johannes C., Lorenz R.L., Lehmann L. Oxidation products of stigmasterol interfere with the action of the female sex hormone 17β‐estradiol in cultured human breast and endometrium cell lines. Mol. Nutr. Food Res. 2007; 51(7):888-98. https://doi.org/10.1002/mnfr.200700025.
- Ordoudi S.A., Tsimidou M.Z. Saffron quality: Effect of agricultural practices, processing and storage. InProduction Practices and Quality Assessment of Food Crops Volume 1: Preharvest Practice. Dordrecht: Springer Netherlands. 2004; 209-260. 10.1007/1-4020-2533-5_8.
- Pandita D. Saffron (Crocus sativus L.): Phytochemistry, therapeutic significance and omics-based biology. In Medicinal and aromatic plants. Academic Press. 2021; 325-396. https://doi.org/10.1016/B978-0-12-819590-1.00014-8.
- Radjabian T., Saboora A., Naderimanesh H., Ebrahimzadeh H. Comparative Analysis of Crocetin and Its Glycosyl Esters from. J. Food Sci. 2001; 38(4):324-8. Thiemann T. Isolation of phthalates and terephthalates from plant material–natural products or contaminants?. Open Chem. J. 2021; 8(1). 10.2174/1874842202108010001.
- Ramu R., Shirahatti P.S., Nayakavadi S., Vadivelan R., Zameer F., Dhananjaya B.L., Prasad N. The effect of a plant extract enriched in stigmasterol and β-sitosterol on glycaemic status and glucose metabolism in alloxan-induced diabetic rats. Food Funct. 2016; 7(9):3999-4011. 10.1039/c6fo00343e.
- Ranjbar R., Shayanfar P., Maniati M. In vitro antileishmanial effects of saffron compounds, crocin and stigmasterol, on iranian strain of Leishmania major (MHOM/IR/75/ER). Iran. J. Parasitol. 2021;16(1):151. https://doi.org/10.18502/ijpa.v16i1.5535.
- Rezaee R., Hosseinzadeh H. Safranal: from an aromatic natural product to a rewarding pharmacological agent. Iran. J. Basic Med. Sci. 2013; 16(1):12. 10.22038/IJBMS.2013.244.
- Romeh A.A. Diethyl phthalate and dioctyl phthalate in Plantago major L. Afr. J. Agric. Res. 2013;8(32):4360-4. https://doi.org/10.5897/AJAR2013.7242.
- Santos M.L., Albini E., Corazza M.L., Krieger N., Voll F.A. Kinetics of enzymatic cetyl palmitate production by esterification with fermented solid of Burkholderia contaminans in the presence of organic solvent. React. Kinet. Mech. Catal. 2021; 132:139-53. https://doi.org/10.1007/s11144-020-01889-3.
- Shafeian E., Ghavam Mostafavi P., Moridi Farimani M., Mashinchian Moradi A., Nazemi M. Extraction and investigation of biological activities of dioctyl phthalate and dibutyl phthalate from marine sponge Haliclona (Soestella) caerulea Larak Island, Persian Gulf. Iran. J. Fish. Sci. 2022; 21(5):1141-55..10.22092/IJFS.2022.127710.
- Shahinfar F., Taghikhah-Khomami S., Fallah S.F., Afshar-Mohammadian M., Bakhshi D. The stamen and stigma of some species of wild saffron (Crocus sp.) as a rich source of antioxidants. Journal of Plant Process and Function. 2021;10(42):1-2. 20.1001.1.23222727.1400.10.42.8.0.
- Sujata V., Ravishankar G.A., Venkataraman L.V. Methods for the analysis of the saffron metabolites crocin, crocetins, picrocrocin and safranal for the determination of the quality of the spice using thin-layer chromatography, high-performance liquid chromatography and gas chromatography. J. Chromatogr. A. 1992; 624(1-2):497-502. https://doi.org/10.1016/0021-9673(92)85699-T.
- Tajik S., Zarinkamar F., Bathaie Z. Quantification of crocin, picrocrocin and safranal components of saffron (Crocus sativus L.) in Ghaen and Tabas regions. Iranian J bio. 2012;25(3):423-429. 10.1002/pca.3047.
- Tammaro F. Notizie storico-colturali sullo zafferano (Crocus sativus L. Iridaceae) nell’area mediterranea. Micol. Veget. Medit. 1987; 2:44-59.https://doi.org/10.1021/acsomega.3c03342.
- Tarantilis P.A., Tsoupras G., Polissiou M. Determination of saffron (Crocus sativus L.) components in crude plant extract using high-performance liquid chromatography-UV-visible photodiode-array detection-mass spectrometry. J. Chromatogr. A. 1995; 699(1-2):107-18. 10.1016/0021-9673(95)00044-n.
- Thiemann T. Isolation of phthalates and terephthalates from plant material–natural products or contaminants?. Open Chem. J. 2021; 8(1).
- Umaru I.J., Badruddin F.A., Umaru H.A. Phytochemical screening of essential oils and antibacterial activity and antioxidant properties of Barringtonia asiatica (L) leaf extract. Biochem. Res. Int. 2019; 2019(1):7143989. 10.1155/2019/7143989.
- Zhang H., Hua Y., Chen J., Li X., Bai X., Wang H. Organism-derived phthalate derivatives as bioactive natural products. Iran. J. Environ. Health Sci. Eng. Part C. 2018; 36(3):125-44. 10.1080/10590501.2018.1490512.
- Zwane B.N., Kamatou G.P., Viljoen A.M., Betti G., Schmidt M. Variation in headspace volatiles of saffron determined by GC × GC-ToF-MS. Nat. Prod. Commun. 2020; 15(11):1934578X20967612. https://doi.org/10.1177/1934578X20967612.
|