In this study, AquaCrop model was employed to simulate the grain yield of pea plants under future climate conditions, considering various irrigation treatments and different planting dates as an adaptation strategy, in Babol County, Iran. The grain yield and biomass of pea plants were simulated for the next three decades for planting dates of October (16, 23, and 30), November 6, 13, 20, and 27), under future climate scenarios of 126SSP, 245SSP, and 585SSP of Intergovernmental Panel on Climate Change (IPCC) Sixth Report, and three levels of irrigation: 100% (I1), 80% (I2), and 60% (I3). According to the results, the highest pea yield in the 2023-32 was simulated for the I1 treatment under the 585SSP scenario on November 6, yielding 7.2 t/ha, while the lowest yield was simulated for the I3 treatment under the same scenario on November 27, yielding 4.1 t/ha. In 2033-42, the highest yield was observed for I1 under the 585SSP scenario on November 13, yielding 8.4 t/ha, and the lowest yield for I3 under the 245SSP scenario on November 27, yielding 4.4 t/ha. In the 2043-52, the highest yield was simulated for I1 under the 585SSP scenario on November 9, yielding 8.7 t/ha, while the lowest yield belonged to I3 under 126SSP on October 16, yielding 3.9 t/ha. The highest pea biomass in 2023-32 was simulated for I1 under the 585SSP scenario on November 13, yielding 17.1 t/ha, while the lowest biomass belonged to I3 under the same scenario on November 27, yielding 10.3 t/ha. In 2033-42, the highest biomass was simulated for I1 under the 585SSP on November 20, yielding 20.1 t/ha, and the lowest biomass for the I3 under the 245SSP scenario on November 27, yielding 11.1 t/ha. In 2043-52, the highest biomass was for the I1 under the 126SSP scenario on November 13, yielding 20.6 t/ha, while the lowest biomass was observed for I3 under the 245SSP on November 27, yielding 12.7 t/ha. Therefore, the optimal planting dates for pea crops in Babol County are October 30, November 6 and 13, under the I1 irrigation, which can help improve crop and irrigation management in this region. Overall, climate change can lead to both increases and decreases in pea yield and biomass, but with proper irrigation management and selection of the optimal planting dates, the likelihood of yield increase is higher. |
- انوری ساوجبلاغی، کامران، تاجبخش، مهدی، چوگان، رجب، و حاجی آقایاری، منوچهر، 1390. بررسی روند تغییرات عملکرد و اجزای عملکرد هیبریدهای ذرت دانهای در انواع گروههای رسیدگی در تاریخ کشتهای مختلف. همایش ملی تغییر اقلیم و تأثیر آن بر کشاورزی و محیطزیست، ارومیه، دوم مرداد، 9 ص.
- جلالی، جواد، نصیری، مرتضی، حبیبی، معصومه، و خیری، نوراله، 1394. بررسی امکان افزایش ضریب موفقیت کشت مستقیم ژنوتیپهای برنج با تغییر تاریخ کاشت. پژوهشی فیزیولوژی گیاهان زراعی، 7(26)، صص. 85-103.
- حسینی، سیده طیبه، خوشروش، مجتبی، ضیاتبار احمدی، میرخالق، 1394. بررسی اثر تغییر اقلیم و ارزیابی تغییر تاریخ کاشت بر عملکرد سویا. پژوهش آب در کشاورزی، 29(4)، صص. 559-575.
doi: https://doi.org/10.22092/jwra.2016.105829
- حقوردیان، مهرداد، سامدلیری، مرتضی، مبصر، حمیدرضا، و موسوی میرکلایی، امیرعباس، 1390. بررسی تأثیر تاریخ کاشت بر عملکرد و برخی صفات در کشت مستقیم ارقام مختلف برنج (Oryza sativa L.). پژوهش در علوم زراعی، 3(12)، صص. 1-16.
- دانش فراز، رسول، و رزاقپور، هادی، 1393. ارزیابی اثرات تغییر اقلیم بر تبخیر و تعرق پتانسیل در استان آذربایجان غربی. فضای جغرافیایی، 14(46)، صص. 199-211.
- راحمی کاریزکی، علی، ثنائی، کوروش، نخزری مقدم، علی، غلامعلیپور علمداری، ابراهیم، پیردهقان، سارا، حبیبیان، لیلا، 1401. اثر تغییر اقلیم بر صفات فنولوژیک نخود (Cicer arietinum L.) تحت شرایط دیم و آبی در شهرستان گنبد. تولید گیاهان زراعی، (1)15، صص. 57-72.
- فراهانیپاد، پوریا، پاکنژاد، فرزاد، ایلکایی، محمدنبی، حبیبی، داوود، و داوودی فرد، مهدی، 1390. شبیهسازی عملکرد و اجزای عملکرد سویا (رقم ویلیامز) در چهار تاریخ کاشت با استفاده از مدل CROPGRO-Soybean در منطقه کرج. زراعت و اصلاح نباتات، 8(4)، صص. 31-41.
- قاسم بگلو، مهدی، صدقی، محمد، سید شریفی، رئوف، و فرزانه، سلیم، 1400. اثر کودهای زیستی بر عملکرد و اجزای عملکرد دانه نخودفرنگی (Pisum sativum L.) تحت سطوح مختلف آبیاری. دانش کشاورزی و تولید پایدار، 31(3)، صص. 169-180. doi: 22034/saps.2021.43011.2583
- یداللهی، امیرحسین، خوشروش، مجتبی، و غلامی سفیدکوهی، محمدعلی، 1400. تأثیر کم آبیاری تنظیمشده با آب مغناطیسی بر خواص کمی، کیفی و بهرهوری آب نخودفرنگی. پژوهش آب در کشاورزی، 35(4)، صص. 373-389.
doi: https://doi.org/10.22092/jwra.2021.356340.897
- Ahmed, , Hasan, A.K., Karmakar, B., Hasan, M.S., Akter, F., Saha, P.S. and Haq, M.E., 2020. Influence of date of sowing on growth and yield performance of field Pea (Pisum sativum L.) genotypes. Asian Research Journal of Agriculture, 13(2), pp. 26-34.
doi: 10.9734/ARJA/2020/v13i230099
- Annan,D. and Hargreaves, J.C., 2011. Understanding the CMIP3 Multimodel Ensemble. Journal of Climate, 24(16), pp.4529-4538.
doi: https://doi.org/10.1175/2011JCLI3873.1
- Challinor, A.J., Watson, J., Lobell, D.B., Howden, S.M., Smith, D.R. and Chhetri, N., 2014. A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4(4), pp.287-291. https://doi.org/10.1038/nclimate2153
- Cheng, M., Wang, H., Fan, J., Xiang, Y., Liu, X., Liao, Z., Abdelghany, A.E., Zhang, F. and Li, Z., 2022. Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies. Agricultural Water Management, 274, pp.107949. https://doi.org/10.1016/j.agwat.2022.107949
- Chibarabada, T.P., Modi, A.T. and Mabhaudhi, T., 2020. Calibration and evaluation of aquacrop for groundnut (Arachis hypogaea) under water deficit conditions. Agricultural and Forest Meteorology, 281, pp.107850.
https://doi.org/10.1016/j.agrformet.2019.107850
- Eyring,, Flato, G., Lamarque, J.F., Meehl, J., Senior, C., Stouffer, R. and Taylor, K., 2019. Status of the coupled model intercomparison project phase 6 (CMIP6) and goals of the workshop. CMIP6 Analysis Workshop, Barcelona, Spain.
- Fowler,J., Blenkinsop, S. and Tebaldi, C., 2007. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, 27(12), pp.1547-1578. doi: 10.1002/joc.1556
- Hosseini,S., Nazari, M. and Araghinejad, S., 2013. Investigating the impacts of climate on agricultural sector with emphasis on the role of adaptation strategies in this sector. Iranian Journal of Agricultural Economics and Development Research, 44(1), pp.1-16.
doi: 10.22059/ijaedr.2013.36064. (In Persian).
- IPCC, 2014. “Climate Change 2014: Synthesis Report”, Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (Eds.)]. IPCC, Geneva, Switzerland, 104 pp.
- Kanda, E.K., Senzanje, A. and Mabhaudhi, T., 2020. Calibration and validation of the AquaCrop model for full and deficit irrigated cowpea (Vigna unguiculata (L.) Walp). Physics and Chemistry of the Earth, 124(2), pp.102941. doi: 1016/j.pce.2020.102941
- Makuvaro, V., Walker, S., Masere, T.P. and Dimes, J., 2018. Smallholder farmer perceived effects of climate change on agricultural productivity and adaptation strategies. Journal of Arid Environmental, 152, pp.75-82.
https://doi.org/10.1016/j.jaridenv.2018.01.016
- Munier-Jolain, N., Biarnès, V., Chaillet, I., Lecoeur, J. and Jeuffroy, M.H., (Eds.). 2010. Physiology of the Pea Crop. Science Publishers, Enfield, USA (270 p).
- O’Neill,C., Carte, T.R., Ebi K. and Harrison P.A., 2020. Achievements and needs for the climate change scenario framework. Natural Climate Change, 10(12), pp.1074-1084. doi:10.1038/s41558-020-00952-0
- O’Neill, B., Kriegler, E., Ebi, K., Kemp-Benedict, , Riahi, K., Rothman, D., Van Ruijven, B., Van Vuuren, D., Birkmann, J., Kok, K., Levy. and Solecki, W. 2017. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 42(1), pp.169-180.
https://doi.org/10.1016/j.gloenvcha.2015.01.004
- Raes, D., Fereres, E., García Vila, M., Curnel, Y., Knoden, D., Kale Çelik, S., Ucar, Y., Türk, M. and Wellens, J., 2023. Simulation of alfalfa yield with AquaCrop. Agricultural Water Management, 284(3), pp.108341.
https://doi.org/10.1016/j.agwat.2023.108341
- Ravasi, R.A., Paleari, L., Vesely, F.M., Movedi, E., Thoelke, W. and Confalonieri, R., 2020. Ideotype definition to adapt legumes to climate change: A case study for field pea in Northern Italy. Journal of Agricultural and Forest Meteorology, 291, pp.108081.
https://doi.org/10.1016/j.agrformet.2020.108081
- Santos, O.F., Cunha, F.F., Taira, T.L., Souza, E.J., Leal, A.J.F., 2023. Increase in pea productivity associated with irrigation management. Horticultura Brasileira, 36(2), pp.178-183. doi: http://dx.doi.org/10.1590/S0102-053620180205
- Steduto, P., Raes, T., Hsiao, T. C. Fereres, E., Heng, L., Izzi, G. and Hoogeveen, J., 2009. AquaCrop: a new model for crop prediction under water deficit conditions. Options Mediterraneennes, 80, pp.285-292.
- Sümer, O., 2024. The Effects of Sowing Date and Cultivars on Yield and Quality of Pea (Pisum sativum L.). doi:10.20944/preprints202401. 1660.v1
- Tacarindua, C.R., Shiraiwa, T., Homma, K., Kumagai, E. and Sameshima, R., 2013. The effects of increased temperature on crop growth and yield of soybean grown in a temperature gradient chamber. Field Crops Research, 154(1), pp.74-81.
doi:https://doi.org/10.1016/j.fcr.2013.07.021
- Umesh, B., Reddy, K.S., Polisgowdar, B.S., Maruthi, V., Satishkumar, U., Ayyanagoudar, M.S., Rao, S. and Veeresh, H., 2022. Assessment of climate change impact on maize (Zea mays ) through aquacrop model in semi-arid alfisol of southern Telangana. Agricultural Water Management, 274, pp.107950. https://doi.org/10.1016/j.agwat.2022.107950
- Wang, H., Cheng, M., Liao, Z., Guo, J., Zhang, F., Fan, J., Feng, H., Yang, Q., Wu, L. and Wang, X., 2023. Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes. Agricultural Water Management, 276, pp.108076.
Doi: https://doi.org/10.1016/j.agwat.2022.108076
|