- Rinschen M.M., Ivanisevic J., Giera M., Siuzdak G. Identification of bioactive metabolites using activity metabolomics. Nat. Rev. Mol. Cell Biol. 2019;20(6):353-367.
- Bourgaud F., Gravot A., Milesi S., Gontier E. Production of plant secondary metabolites: a historical perspective. Plant Sci. 2001;161(5):839-851.
- Nemati Z., Blattner F.R., Kerndorff H., Erol O., Harpke D. Phylogeny of the saffron-crocus species group, Crocus series Crocus (Iridaceae). Mol. Phylogenetics Evol. 2018;127:891-897.
- Kianbakht S., Hajiaghaee R. Anti-hyperglycemic effects of saffron and its active constituents, crocin and safranal, in alloxan-induced diabetic rats. J. Med. Plants. 2011;10(39):82-89.
- Kumar S., Narwal S., Kumar V., Prakash O. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev. 2011;5(9):19.
- Moudi M., Zivyar N., Bagherzade G. Identification of phenolic and flavenoid compounds in Crocus pallasii subsp. haussknechtii (Boiss. & Reut. ex Maw) B. Mathew. and antibacterial analysis. J. Saffron. Res. 2020;8(1):127-140.
- Mosaddegh M., Esmaeili S., Eslami-Tehrani B., Kermatian B., Mohebby S., Hamzeloo-Moghadam M. Anti-angiogenesis properties of Crocus pallasii subsp. haussknechtii, a popular ethnic food. Res. J. Pharmacogn. 2015;2(3):37-42.
- Hamzeloo-Moghadam M., Shahrestani R., Keramatian B., Mohebby S. Cytotoxic activity of Crocus pallasii subsp. haussknechth in human cancer cell lines. Int. J. Pharm. Sci. Res. 2019;10(1):117-120.
- Khorshidi J., Radjabian T., Lashkari A., Safavi M. Cytotoxic and antioxidant activities of Crocus pallasii subsp. haussknechtii corms extracts compared with Crocus sativus. Res. J. Pharmacogn. 2019;6(3):51-59.
- Azmir J., Zaidul I., Rahman M., Sharif K., Mohamed A., Sahena F., Jahurul M., Ghafoor K., Norulaini N., Omar A. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013;117(4):426-436.
- Tauler R., Gorrochategui E., Jaumot J. A protocol for LC-MS metabolomic data processing using chemometric tools. 2015.
- Pistia-Brueggeman G., Hollingsworth R.I. The use of the o-nitrophenyl group as a protecting/activating group for 2-acetamido-2-deoxyglucose. Carbohydr. Res. 2003;338(5):455-458.
- Van Meerloo J., Kaspers G.J., Cloos J. Cell sensitivity assays: the MTT assay. Cancer cell culture: methods and protocols. Springer. 2011;237-245.
- Loizzo M.R., Marrelli M., Pugliese A., Conforti F., Nadjafi F., Menichini F., Tundis R. Crocus cancellatus subsp. damascenus stigmas: chemical profile, and inhibition of α-amylase, α-glucosidase and lipase, key enzymes related to type 2 diabetes and obesity. J. Enzyme Inhib. Med. Chem. 2016;31(2):212-218.
- Li S., Shao Q., Lu Z., Duan C., Yi H., Su L. Rapid determination of crocins in saffron by near-infrared spectroscopy combined with chemometric techniques. Spectrochim. Acta A. 2018;190:283-289.
- Bastani S., Vahedian V., Rashidi M., Mir A., Mirzaei S., Alipourfard I., Pouremamali F., Nejabati H., Maroufi N.F., Akbarzadeh M. An evaluation on potential anti-oxidant and anti-inflammatory effects of Crocin. Biomed. Pharmacother. 2022;153:113297.
- Algandaby M.M. Antifibrotic effects of crocin on thioacetamide-induced liver fibrosis in mice. Saudi J. Biol. Sci. 2018;25(4):747-754.
- Liou J.-C., Yang S.-L., Wang P.-H., Wu J.-L., Huang Y.-P., Chen B.-Y., Lee M.-C. Protective effect of crocin against the declining of high spatial frequency-based visual performance in mice. J. Funct. Foods. 2018;49:314-323.
- Boussabbeh M., Salem I.B., Belguesmi F., Bacha H., Abid-Essefi S. Tissue oxidative stress induced by patulin and protective effect of crocin. Neurotoxicology. 2016;53:343-349.
- Zarghami N., Heinz D. Monoterpene aldehydes and isophorone-related compounds of saffron. Phytochemistry. 1971;10(11):2755-2761.
- Tarantilis P.A., Polissiou M.G. Isolation and identification of the aroma components from saffron (Crocus sativus). J. Agric. Food Chem. 1997;45(2):459-462.
- Wang L., Pan X., Jiang L., Chu Y., Gao S., Jiang X., Zhang Y., Chen Y., Luo S., Peng C. The biological activity mechanism of chlorogenic acid and its applications in food industry: A review. Front. Nutr. 2022;9:943911.
- Mykhailenko O., Ivanauskas L., Bezruk I., Sidorenko L., Lesyk R., Georgiyants V. Characterization of phytochemical components of Crocus sativus leaves: a new attractive by-product. Sci. Pharm. 2021;89(2):28.
- Karimi E., Oskoueian E., Hendra R., Jaafar H.Z. Evaluation of Crocus sativus L. stigma phenolic and flavonoid compounds and its antioxidant activity. Molecules. 2010;15(9):6244-6256.
- Escribano J., Alonso G.-L., Coca-Prados M., Fernández J.-A. Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Lett. 1996;100(1-2):23-30.
- Cerdá-Bernad D., Valero-Cases E., Pastor J.-J., Frutos M.J. Saffron bioactives crocin, crocetin and safranal: Effect on oxidative stress and mechanisms of action. Crit. Rev. Food Sci. Nutr. 2022;62(12):3232-3249.
- Caballero-Ortega H., Pereda-Miranda R., Abdullaev F.I. HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chem. 2007;100(3):1126-1131.
- Stojkovic D., Smiljkovic M., Ciric A., Glamoclija J., Van Griensven L., Ferreira I.C., Sokovic M. An insight into antidiabetic properties of six medicinal and edible mushrooms: Inhibition of α-amylase and α-glucosidase linked to type-2 diabetes. S. Afr. J. Bot. 2019;120:100-103.
- Ren S., Wan Y., Zhu X., Liu Z., Zhao W., Xie D., Wang S. Influence of gardenia yellow on in vitro slow starch digestion and its action mechanism. RSC Adv. 2022;12(11):6738-6747.
- Su C.H., Hsu C.H., Ng L.T. Inhibitory potential of fatty acids on key enzymes related to type 2 diabetes. Biofactors. 2013;39(4):415-421.
- Oboh G., Agunloye O.M., Adefegha S.A., Akinyemi A.J., Ademiluyi A.O. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study. J. Basic Clin. Physiol. Pharmacol. 2015;26(2):165-170.
- Karakaya S., Gözcü S., Güvenalp Z., Özbek H., Yuca H., Dursunoğlu B., Kazaz C., Kılıç C.S. The α-amylase and α-glucosidase inhibitory activities of the dichloromethane extracts and constituents of Ferulago bracteata roots. Pharm. Biol. 2018;56(1):18-24.
- Abdullaev F., Espinosa-Aguirre J. Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detect. Prev. 2004;28(6):426-432.
- Chou S.Y., Hsu C.S., Wang K.T., Wang M.C., Wang C.C. Antitumor effects of Osthol from Cnidium monnieri: an in vitro and in vivo study. Phytother. Res. 2007;21(3):226-230.
- Kanakis C., Tarantilis P., Pappas C., Bariyanga J., Tajmir-Riahi H., Polissiou M. An overview of structural features of DNA and RNA complexes with saffron compounds: Models and antioxidant activity. J. Photochem. Photobiol., B. 2009;95(3):204-212.
- Abdullaev F.I. Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp. Biol. Med. 2002;227(1):20-25.
- Das I., Das S., Saha T. Saffron suppresses oxidative stress in DMBA-induced skin carcinoma: A histopathological study. Acta Histochem. 2010;112(4):317-327.
|