شریفی، م.، خواجعلی، ف.، احمدی جونقانی، ب.، حسن پور، ح.، صفر پور، ع. (1395) استفاده از گوانیدینو استیک اسید در جیره های کم پروتئین و تاثیر آن بر عملکرد رشد و وقوع آسیت در جوجه های گوشتی. پژوهشهای تولیدات دامی (7) 51-44.
Ahmadipour, B., Zafari Naeini, S., Sharifi, M. and Khajali, F. (2018). Growth performance and right ventricular hypertrophy responses of broiler chickens to guanidinoacetic acid supplementation under hypobaric hypoxia. The Journal of Poultry Science, 55, 60-64.
Ale Saheb Fosoul, S. S. A. S., Azarfar, A., Gheisari, A. and Khosravinia, H. (2018). Energy utilisation of broiler chickens in response to guanidinoacetic acid supplementation in diets with various energy contents. British Journal of Nutrition, 120(2), 131-140.
Ale Saheb Fosoul, S. S., Azarfar, A., Gheisari, A. and Khosravinia, H. (2019). Performance and physiological responses of broiler chickens to supplemental guanidinoacetic acid in Arginine-deficient diets. British Poultry Science, 60(2), 161-168.
Amiri, M., Ghasemi, H. A., Hajkhodadadi, I. and Farahani, A. H. K. (2019). Efficacy of guanidinoacetic acid at different dietary crude protein levels on growth performance, stress indicators, antioxidant status, and intestinal morphology in broiler chickens subjected to cyclic heat stress. Animal Feed Science and Technology, 254, 114208.
Aviagen. (2009). Parent Stock Management Handbook: Ross.
Brosnan, J. T., Wijekoon, E. P., Warford-Woolgar, L., Trottier, N. L., Brosnan, M. E., Brunton, J. A. and Bertolo, R. F. (2009). Creatine synthesis is a major metabolic process in neonatal piglets and has important implications for amino acid metabolism and methyl balance. The Journal of nutrition, 139(7), 1292-1297.
Carvalho, C. M. C., Fernandes, E. A., De Carvalho, A. P., Maciel, M. P., Caires, R. M. and Fagundes, N. S. (2013). Effect of creatine addition in feeds containing animal meals on the performance and carcass yield of broilers. Brazilian Journal of Poultry Science, 15, 269-275.
Chen, J., Wang, M., Kong, Y., Ma, H. and Zou, S. (2011). Comparison of the novel compounds creatine and pyruvate on lipid and protein metabolism in broiler chickens. Animal, 5(7), 1082-1089.
Córdova-Noboa, H. A., Oviedo-Rondón, E. O., Sarsour, A. H., Barnes, J., Ferzola, P., Rademacher-Heilshorn, M. and Braun, U. (2018). Performance, meat quality, and pectoral myopathies of broilers fed either corn or sorghum based diets supplemented with guanidinoacetic acid. Poultry science, 97(7), 2479-2493.
DeGroot, A. (2014). Efficacy of dietary guanidinoacetic acid in broiler chicks. University of Illinois. Master dissertation.
DeGroot, A. A., Braun, U. and Dilger, R. N. (2019). Guanidinoacetic acid is efficacious in improving growth performance and muscle energy homeostasis in broiler chicks fed arginine-deficient or arginine-adequate diets. Poultry science, 98(7), 2896-2905.
DeGroot, A. A., Braun, U. and Dilger, R. N. (2018). Efficacy of guanidinoacetic acid on growth and muscle energy metabolism in broiler chicks receiving arginine-deficient diets. Poultry science, 97(3), 890-900.
Dilger, R. N., Bryant-Angeloni, K., Payne, R. L., Lemme, A. and Parsons, C. M. (2013). Dietary guanidino acetic acid is an efficacious replacement for arginine for young chicks. Poultry Science, 92(1), 171-177.
Ibrahim, D., El Sayed, R., Abdelfattah-Hassan, A. and Morshedy, A. M. (2019). Creatine or guanidinoacetic acid? Which is more effective at enhancing growth, tissue creatine stores, quality of meat, and genes controlling growth/myogenesis in Mulard ducks. Journal of Applied Animal Research, 47(1), 159-166.
Jariyahatthakij, P., Chomtee, B., Poeikhampha, T., Loongyai, W. and Bunchasak, C. (2018). Effects of adding methionine in low-protein diet and subsequently fed low-energy diet on productive performance, blood chemical profile, and lipid metabolism-related gene expression of broiler chickens. Poultry science, 97(6), 2021-2033.
Kamran, Z., Sarwar, M., Nisa, M., Nadeem, M. A., Ahmad, S., Nawaz, H. and Shahzad, M. I. (2016). Nutrients retention, nitrogen excretion, litter composition and plasma biochemical profile in broilers fed low crude protein diets with constant metabolizable energy to crude protein ratio. Archiva Zootechnica, 19(2), 77.
Khajali, F., Lemme, A. and Rademacher-Heilshorn, M. (2020). Guanidinoacetic acid as a feed supplement for poultry. World's Poultry Science Journal, 76(2), 270-291.
Khajali, F., Tahmasebi, M., Hassanpour, H., Akbari, M. R., Qujeq, D. and Wideman, R. F. (2011). Effects of supplementation of canola meal-based diets with Arginine on performance, plasma nitric oxide, and carcass characteristics of broiler chickens grown at high altitude. Poultry Science, 90, 2287–2294.
Kodambashi-Emami, N., Golian, A. and Rhoads, D. D. (2017). Interactive effects of temperature and dietary supplementation of Arginine or guanidinoacetic acid on nutritional and physiological responses in male broiler chickens. British Poultry Science, 58(1), 87-94.
Majdeddin, M., Golian, A., Kermanshahi, H., Michiels, J. and De Smet, S. (2019). Effects of methionine and guanidinoacetic acid supplementation on performance and energy metabolites in breast muscle of male broiler chickens fed corn-soybean diets. British poultry science, 60(5), 554-563.
Michiels, J., Maertens, L., Buyse, J., Lemme, A., Rademacher, M., Dierick, N. A. and De Smet, S. (2012). Supplementation of guanidinoacetic acid to broiler diets: effects on performance, carcass characteristics, meat quality, and energy metabolism. Poultry science, 91(2), 402-412.
Mousavi, S. N., Afsar, A. and Lotfollahian, H. (2013). Effects of guanidinoacetic acid supplementation to broiler diets with varying energy contents. Journal of Applied Poultry Research, 22(1), 47-54.
Nain, S., Ling, B., Alcorn, J., Wojnarowicz, C. M., Laarveld, B. and Olkowski, A. A. (2008). Biochemical factors limiting myocardial energy in a chicken genotype selected for rapid growth. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 149(1), 36-43.
Nasiroleslami, M., Torki, M., Saki, A. A. and Abdolmohammadi, A. R. (2018). Effects of dietary guanidinoacetic acid and betaine supplementation on performance, blood biochemical parameters and antioxidant status of broilers subjected to cold stress. Journal of Applied Animal Research, 46(1), 1016-1022.
Ostojic, S. M. (2016). Guanidinoacetic acid as a performance-enhancing agent. Amino acids, 48, 1867-1875.
Paryad, A. and Mahmoudi, M. (2008). Effect of different levels of supplemental yeast (Saccharomyces cerevisiae) on performance, blood constituents and carcass characteristics of broiler chicks. African Journal of Agricultural Research, 3(12), 835-842.
Portocarero, N. and Braun, U. (2021). The physiological role of guanidinoacetic acid and its relationship with arginine in broiler chickens. Poultry Science, 100(7), 101203.
Sharma, N. K., Cadogan, D. J., Chrystal, P. V., McGilchrist, P., Wilkinson, S. J., Inhuber, V. and Moss, A. F. (2022). Guanidinoacetic acid as a partial replacement to arginine with or without betaine in broilers offered moderately low crude protein diets. Poultry Science, 101(4), 101692.
Thim, C. K., Hamre, M. L. and Coon, C. N. (1997). Effect of environmental temperature, dietary protein, and energy levels on broiler performance. Journal of Applied Poultry Research, 6(1), 1-17.
Tossenberger, J., Rademacher, M., Németh, K., Halas, V. and Lemme, A. J. P. S. (2016). Digestibility and metabolism of dietary guanidino acetic acid fed to broilers. Poultry Science, 95(9), 2058-2067.
Wyss, M. and Kaddurah-Daouk, R. (2000). Creatine and creatinine metabolism. Physiological reviews, 80(3), 1107-1213.
Zhao, W., Li, J., Xing, T., Zhang, L. and Gao, F. (2021). Effects of guanidinoacetic acid and complex antioxidant supplementation on growth performance, meat quality, and antioxidant function of broiler chickens. Journal of the Science of Food and Agriculture, 101(9), 3961-3968.
Zhu, Z., Gu, C., Hu, S., Li, B., Zeng, X. and Yin, J. (2020). Dietary guanidinoacetic acid supplementation improved carcass characteristics, meat quality and muscle fiber traits in growing–finishing gilts. Journal of animal physiology and animal nutrition, 104(5), 1454-1461.