Ansori, A., & Gholami, A. (2015). Improved nutrient uptake and growth of maize in response to inoculation with Thiobacillus and mycorrhiza on an alkaline soil. Communications in Soil Science and Plant Analysis, 46(17), 2111-2126. https://doi.org/10.1080/00103624.2015.1048251
Asadi Rahmani, H., Khavazi, K., Jahandideh Mahjen Abadi, V., Ramezanpour, M., Mirzapour, M., & Mirzashahi, K. (2018). Effect of Thiobacillus, sulfur, and phosphorus on the yield and nutrient uptake of canola and the chemical properties of calcareous soils in Iran. Communications in Soil Science and Plant Analysis, 49(14), 1671-1683. https://doi.org/10.1080/00103624.2018.1474905
Atarod, H., Irannejad, H., Shirani Rad, A. H., Amiri, R., & Akbari, G. (2011). Assessment of drought stress and planting date effects on original plant and its seed electrical conductivity rate. Iranian Journal of Field Crops Research, 9(2), 242-247. https://doi.org/10.22067/gsc.v9i2.10999 [In Persian]
Attarzadeh, M., Balouchi, H., Dehnavi, M., Salehi, A., & Rajaie, M. (2019). Response of germination and electrical conductivity of seeds produced by Echinacea purpurea's mother plants under the influence of biological fertilizers and drought stress. Iranian Journal of Seed Science and Technology, 18(1), 185-200. https://doi.org/10.22034/ijsst.2019.115796.1141 [In Persian]
Bakhshandeh, E., & Jamali, M. (2020). Population-based threshold models: A reliable tool for describing aged seeds response of rapeseed under salinity and water stress. Environmental and Experimental Botany, 176, 104077. https://doi.org/10.1016/j.envexpbot.2020.104077
Bayati, P., Karimmojeni, H., Razmjoo, J., Pucci, M., Abate, G., Baldwin, T. C., & Mastinu, A. (2022). Physiological, biochemical, and agronomic trait responses of Nigella sativa genotypes to water stress. Horticulturae, 8(2), 193. https://doi.org/10.3390/horticulturae8030193
Ben Laouane, R., Meddich, A., Bechtaoui, N., Oufdou, K., & Wahbi, S. (2019). Effects of arbuscular mycorrhizal fungi and rhizobia symbiosis on the tolerance of Medicago sativa to salt stress. Gesunde Pflanzen, 71(2), 135-146. https://doi.org/10.1007/s10343-019-00461-x
Bernfeld, P. (1955). Amylase α and β. In Methods in Enzymology (Vol. 1, pp. 149-158). Academic Press. http://dx.doi.org/10.1016/0076-6879(55)01021-5
Chakraborty, O., Agrawala, D. K., & Chakraborty, A. P. (2023). Studies on orchidoid mycorrhizae and mycobionts associated with orchid plants as plant growth promoters and stimulators in seed germination. In P. Mathur, R. Kapoor, & S. Roy (Eds.), Microbial Symbionts and Plant Health: Trends and Applications for Changing Climate (pp. 439-463). Springer. https://doi.org/10.1007/978-981-99-0030-5_16
Cheikh-Rouhou, S., Besbes, S., Hentati, B., Blecker, C., Deroanne, C., & Attia, H. (2007). Nigella sativa L.: Chemical composition and physicochemical characteristics of lipid fraction. Food Chemistry, 101, 673-681. https://doi.org/10.1016/j.foodchem.2006.02.022
Copeland, L. O., & McDonald, M. B. (2001). Seed vigor and vigor tests. In L. O. Copeland & M. B. McDonald (Eds.), Principles of seed science and technology (4th ed., pp. 121-144). Kluwer Academic Publishing Group.
Dean, J. A. (1985). Legends handbook of chemistry. CRC Press.
Dornbos, D. L. (2020). Production environment and seed quality. In Seed quality (pp. 119-152). CRC Press.
Gimbi, D. M., & Kitabatake, N. (2002). Changes in alpha- and beta-amylase activities during seed germination of African finger millet. International Journal of Food Sciences and Nutrition, 53(6), 481-488. https://doi.org/10.1080/09637480220164361
Hamidi, A., Daneshian, J., & Asgharzadeh, A. (2016). A review of drought stress on mother plant effect on soybean seed germination and vigour improvement by some beneficial soil microorganisms treatment assessment. Iranian Journal of Seed Sciences and Research, 3(2), 109-124. https://doi.org/10.1001.1.24763780.1395.3.2.10.6 [In Persian]
Heydari, S., & Pirzad, A. (2020). Mycorrhizal fungi and Thiobacillus co-inoculation improve the physiological indices of Lallemantia iberica under salinity stress. Current Microbiology, 77(9), 2523-2534. https://doi.org/10.1007/s00284-020-02034-y
Heydari, S., & Pirzad, A. (2021). Improvement of the yield-related response of mycorrhized Lallemantia iberica to salinity through sulfur-oxidizing bacteria. Journal of the Science of Food and Agriculture, 101(9), 3758-3766. https://doi.org/10.1002/jsfa.11007
Hosseini, P., Mohsenifar, K., Rajaie, M., & Babaeinezhad, T. (2020). Improvement and regeneration of canola seeds (Brassica napus) with growth-promoting compounds under different irrigation intervals. Iranian Journal of Seed Sciences and Research, 7(4), 463-475. https://doi.org/10.22124/jms.2020.4643 [In Persian]
Hosseini, S. S., Nadjafi, F., Asareh, M. H., & Rezadoost, H. (2018). Morphological and yield-related traits, essential oil, and oil production of different landraces of black cumin (Nigella sativa) in Iran. Scientia Horticulturae, 233, 1-8. https://doi.org/10.1016/j.scienta.2018.01.038
Igiehon, N. O., Babalola, O. O., Cheseto, X., & Torto, B. (2021). Effects of rhizobia and arbuscular mycorrhizal fungi on yield, size distribution, and fatty acid of soybean seeds grown under drought stress. Microbiological Research, 242, 126640. https://doi.org/10.1016/j.micres.2020.126640
Ijaz, H., Tulain, U. R., Qureshi, J., Danish, Z., Musayab, S., Akhtar, M. F., Saleem, A., Khan, K. A.-U.-R., Zaman, M., & Waheed, I. (2017). Nigella sativa (Prophetic Medicine): A review. Pakistan Journal of Pharmaceutical Sciences, 30(1), 229-234.
International Seed Testing Association (ISTA). (2003). Handbook for seedling evaluation (3rd ed.). International Seed Testing Association.
Jabborova, D., Annapurna, K., Paul, S., Kumar, S., Saad, H. A., Desouky, S., Ibrahim, M. F., & Elkelish, A. (2021). Beneficial features of biochar and arbuscular mycorrhiza for improving spinach plant growth, root morphological traits, physiological properties, and soil enzymatic activities. Journal of Fungi, 7(7), 571. https://doi.org/10.3390/jof7070571
Kazemi, M. (2014). Phytochemical composition, antioxidant, anti-inflammatory, and antimicrobial activity of Nigella sativa L. essential oil. Journal of Essential Oil Bearing Plants, 17(5), 1002-1011. https://doi.org/10.1080/0972060X.2014.914857
Li, G., Wan, S., Zhou, J., Yang, Z., & Qin, P. (2010). Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde, and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Industrial Crops and Products, 31(1), 13-19. https://doi.org/10.1016/j.indcrop.2009.07.015
Liu, R., Chang, D., Sun, Z., Wu, Y., Zhang, X., Lu, C., Mao, Y., Chen, J., & Cai, B. (2023a). Effect of Funneliformis mosseae and Thiabacillus thioparus on sulfur utilization in soybean sterilized soil under continuous cropping. Plant and Soil, 490(1-2), 1-14. https://doi.org/10.1007/s11104-023-06081-9
Liu, R., Yang, L., Zou, Y., & Wu, Q. (2023b). Root-associated endophytic fungi modulate endogenous auxin and cytokinin levels to improve plant biomass and root morphology of trifoliate orange. Horticultural Plant Journal, 9(3), 463-472. https://doi.org/10.1016/j.hpj.2022.08.009
Maguire, J. D. (1962). Speed of germination: Aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2, 176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033x
Majeed, A., Muhammad, Z., Ahmad, H., Hayat, S. S. S., Inayat, N., & Siyyar, S. (2020). Nigella sativa L.: Uses in traditional and contemporary medicines—An overview. Acta Ecologica Sinica. https://doi.org/10.1016/j.chnaes.2020.02.001
Mangal, V., Lal, M. K., Tiwari, R. K., Altaf, M. A., Sood, S., Kumar, D., Bharadwaj, V., Singh, B., Singh, R. K., & Aftab, T. (2022). Molecular insights into the role of reactive oxygen, nitrogen, and sulfur species in conferring salinity stress tolerance in plants. Journal of Plant Growth Regulation, 42(2), 554-574. https://doi.org/10.1007/s00344-022-10591-8
Mirzaie, H., Shekari, F., Fotovat, R., & Amir Delavar, M. (2023). Evaluation of growth of corn in the vegetative stage under contaminated soil conditions by applying sulfur-containing compounds and Thiobacillus bacteria. Journal of Crops Improvement, 25(4), 1055-1069. https://doi.org/10.22059/jci.2023.355626.2794 [In Persian]
Mishra, P., Mishra, J., & Arora, N. K. (2021). Plant growth-promoting bacteria for combating salinity stress in plants: Recent developments and prospects—a review. Microbiological Research, 252, 126861. https://doi.org/10.1016/j.micres.2021.126861
Miura, C., Furui, Y., Yamamoto, T., Kanno, Y., Honjo, M., Yamaguchi, K., Suetsugu, K., Yagame, T., Seo, M., & Shigenobu, S. (2023). Auto-activation of mycorrhizal symbiosis signaling through gibberellin deactivation in orchid seed germination. Plant Physiology, 194(1), 546-563. https://doi.org/10.1093/plphys/kiad517
Mohamed, A. A., Eweda, W. E., Heggo, A., & Hassan, E. A. (2014). Effect of dual inoculation with arbuscular mycorrhizal fungi and sulfur-oxidizing bacteria on onion (Allium cepa L.) and maize (Zea mays L.) grown in sandy soil under greenhouse conditions. Annals of Agricultural Sciences, 59(1), 109-118. https://doi.org/10.1016/j.aoas.2014.06.015
Morales-Cedillo, F., Gonzalez-Solis, A., Gutiérrez-Angoa, L., Cano-Ramírez, D. L., & Gavilanes-Ruiz, M. (2015). Plant lipid environment and membrane enzymes: The case of the plasma membrane H+-ATPase. Plant Cell Reports, 34(4), 617-629. https://doi.org/10.1007/s00299-014-1735-z
Mostafavian, S., Pirdashti, H., Ramzanpour, M., Andarkhor, A., & Shahsavari, A. (2008). Effect of mycorrhizae, Thiobacillus, and sulfur nutrition on the chemical composition of soybean [Glycine max (L.) Merr.] seed. Pakistan Journal of Biological Sciences, 11(6), 826-835. https://doi.org/10.3923/pjbs.2008.826.835
Nichols, M. A., & Heydecker, W. (1986). Two approaches to the study of germination date. Proceedings of the International Seed Testing Association, 33, 531-540.
Poonia, S. (2019). Studies on alpha-amylase activity in germinating seeds of four leguminous crops in response to sulfur dioxide. Biotech Today, 9(5), 51-53. https://doi.org/10.5958/2322-0996.2019.00021.8
Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., & Job, D. (2012). Seed germination and vigor. Annual Review of Plant Biology, 63, 507-533.
Reed, R. C., Bradford, K. J., & Khanday, I. (2022). Seed germination and vigor: Ensuring crop sustainability in a changing climate. Heredity, 1-10. https://doi.org/10.1038/s41437-022-00497-2
Saha, D., Choyal, P., Mishra, U. N., Dey, P., Bose, B., Prathibha, M., Gupta, N. K., Mehta, B. K., Kumar, P., & Pandey, S. (2022). Drought stress responses and inducing tolerance by seed priming approach in plants. Plant Stress, 4, 100066. https://doi.org/10.1016/j.stress.2022.100066
Sakin, E., & Yanardağ, İ. H. (2023). The influence of micronized sulfur amendments on the chemical properties of the calcareous soil and wheat growth. Journal of Plant Nutrition, 46(3), 1-10. https://doi.org/10.1080/01904167.2022.2161393
Sehar, Z., Jahan, B., Masood, A., Anjum, N. A., & Khan, N. A. (2021). Hydrogen peroxide potentiates defense system in presence of sulfur to protect chloroplast damage and photosynthesis of wheat under drought stress. Physiologia Plantarum, 172(2), 922-934. https://doi.org/10.1111/ppl.13225
Seifi, S., & Souri, B. (2021). Modification of calcareous soil with sulfur to improve tomato yield and nutrition. Journal of Soil and Plant Interactions, Isfahan University of Technology, 12(3), 87-99. https://doi.org/10.47176/jspi.12.3.20361
Seyyedi, S. M., Moghaddam, P. R., Khajeh-Hosseini, M., & Shahandeh, H. (2015). Influence of phosphorus and soil amendments on black seed (Nigella sativa L.) oil yield and nutrient uptake. Industrial Crops and Products, 77, 167-174. https://doi.org/10.1016/j.indcrop.2015.08.065
Shah, S. H., Islam, S., & Mohammad, F. (2022). Sulfur as a dynamic mineral element for plants: A review. Journal of Soil Science and Plant Nutrition, 22, 2118-2143. https://doi.org/10.1007/s42729-022-00798-9
Sheteiwy, M. S., Abd Elgawad, H., Xiong, Y. C., Macovei, A., Brestic, M., Skalicky, M., Shaghaleh, H., Alhaj Hamoud, Y., & El-Sawah, A. M. (2021). Inoculation with Bacillus amyloliquefaciens and mycorrhiza confers tolerance to drought stress and improves seed yield and quality of soybean plants. Physiologia Plantarum, 172(6), 2153-2169. https://doi.org/10.1111/ppl.13454
Wipf, D., Mongelard, G., Van Tuinen, D., Gutierrez, L., & Casieri, L. (2014). Transcriptional responses of Medicago truncatula upon sulfur deficiency stress and arbuscular mycorrhizal symbiosis. Frontiers in Plant Science, 5, 680. https://doi.org/10.3389/fpls.2014.00680
Yigit, N., Sevik, H., Cetin, M., & Kaya, N. (2016). Determination of the effect of drought stress on seed germination in some plant species. Water Stress in Plants, 43, 62.