-Al-Shehri, B.M., Haddadi, T.M., Alasmari, E., Ghramh, H.A., Khan, K.A., Mohammed, M.E.A. & Khayyat, M.M., 2022. Effect of storage time and floral origin on the physicochemical properties of beeswax and the possibility of using it as a phase changing material in the thermal storage energy technology. Foods, 11(23), 3920.
-Andersson, C., 2008. New ways to enhance the functionality of paperboard by surface treatment–a review. Packaging Technology and Science: An International Journal, 21(6), 339-373.
-Basta, A.H., Khwaldia, K., Aloui, H. & El-Saied, H., 2015. Enhancing the performance of carboxymethyl cellulose by chitosan in producing barrier coated paper sheets. Nordic Pulp & Paper Research Journal, 30(4), 617-625.
-Bian, P., Dai, Y., Qian, X., Chen, W., Yu, H., Li, J. & Shen, J., 2014. A process of converting cellulosic fibers to a superhydrophobic fiber product by internal and surface applications of calcium carbonate in combination with bio-wax post-treatment. Rsc Advances, 4(95), 52680-52685.
-Chowdhury, P., Gupta, P., Kumar, M., Bajpai, P.K. & Varadhan, R., 2005. Study on Improving the Opacity of Paper Using Adjunct Filler Pigments. IPPTA, 17(3), 57
-Chungsiriporn, J., Khunthongkaew, P., Wongnoipla, Y., Sopajarn, A., Karrila, S. & Iewkittayakorn, J., 2022. Fibrous packaging paper made of oil palm fiber with beeswax-chitosan solution to improve water resistance. Industrial Crops and Products, 177, 114541.
-Darband, G.B., Aliofkhazraei, M., Khorsand, S., Sokhanvar, S. & Kaboli, A., 2020. Science and engineering of superhydrophobic surfaces: review of corrosion resistance, chemical and mechanical stability. Arabian Journal of Chemistry, 13(1), 1763-1802.
-Diggle, A. & Walker, T.R., 2020. Implementation of harmonized Extended Producer Responsibility strategies to incentivize recovery of single-use plastic packaging waste in Canada. Waste Management, 110, 20-23.
-Ding, R., Tong, L. & Zhang, W., 2021. Microplastics in freshwater environments: sources, fates and toxicity. Water, Air, & Soil Pollution, 232, 1-19.
-Diyana, Z.N., Jumaidin, R., Selamat, M.Z. & Suan, M.S.M., 2021. Thermoplastic starch/beeswax blend: Characterization on thermal mechanical and moisture absorption properties. International journal of biological macromolecules, 190, 224-232.
-Du, Y.F., Zang, Y.H., Liu, S.F. & Xu, Y., 2011. The influence of CMC on paper coating properties. Advanced materials research, 236, 1391-1395.
-Forsman, N., Johansson, L.S., Koivula, H., Tuure, M., Kääriäinen, P. & Österberg, M., 2020. Open coating with natural wax particles enables scalable, non-toxic hydrophobation of cellulose-based textiles. Carbohydrate polymers, 227, 115363.
-He, Y., Li, H., Fei, X. & Peng, L., 2021. Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of paper for food packaging applications. Carbohydrate polymers, 252, 117156.
-Hendrawati, N., Wibowo, A.A., Chrisnandari, R.D. & Adawiyah, R., 2021. Biodegradable foam tray based on sago starch with beeswax as coating agent. In IOP Conference Series: Materials Science and Engineering (Vol. 1073, No. 1, p. 012006). IOP Publishing.
-Iewkittayakorn, J., Khunthongkaew, P., Wongnoipla, Y., Kaewtatip, K., Suybangdum, P. & Sopajarn, A., 2020. Biodegradable plates made of pineapple leaf pulp with biocoatings to improve water resistance. Journal of Materials Research and Technology, 9(3), 5056-5066.
-Jiang, X., Li, Q., Li, X., Meng, Y., Ling, Z., Ji, Z., & Chen, F., 2022. Preparation and characterization of degradable cellulose− based paper with superhydrophobic, antibacterial, and barrier properties for food packaging. International Journal of Molecular Sciences, 23(19), 11158.
-Khwaldia, K., 2010. Water vapor barrier and mechanical properties of paper‐sodium caseinate and paper‐sodium caseinate‐paraffin wax films. Journal of Food Biochemistry, 34(5), 998-1013.
-Khwaldia, K., Arab‐Tehrany, E. & Desobry, S., 2010. Biopolymer coatings on paper packaging materials. Comprehensive reviews in food science and food safety, 9(1), 82-91.
-Laine, J. & Lindström, T., 2000. Studies on topochemical modification of cellulosic fibres: Part 1. Chemical conditions for the attachment of carboxymethyl cellulose onto fibres. Nordic Pulp & Paper Research Journal, 15(5), 520-526.
-Li, H., He, Y., Yang, J., Wang, X., Lan, T. & Peng, L., 2019a. Fabrication of food-safe superhydrophobic cellulose paper with improved moisture and air barrier properties. Carbohydrate polymers, 211, 22-30
-Li, H., Wang, X., He, Y. & Peng, L., 2019b. Facile preparation of fluorine-free superhydrophobic/ superoleophilic paper via layer-by-layer deposition for self-cleaning and oil/water separation. Cellulose, 26, 2055-2074
-Li, H., Yang, J., Li, P., Lan, T. & Peng, L., 2017. A facile method for preparation superhydrophobic paper with enhanced physical strength and moisture-proofing property. Carbohydrate polymers, 160, 9-17.
-Liu, K., Liang, H., Nasrallah, J., Chen, L., Huang, L. & Ni, Y., 2016. Preparation of the CNC/Ag/beeswax composites for enhancing antibacterial and water resistance properties of paper. Carbohydrate polymers, 142, 183-188.
-Liu, Y., Ma, Y., Feng, T., Luo, J., Sameen, D.E., Hossen, M.A. & Qin, W., 2021. Development and characterization of aldehyde-sensitive cellulose/ chitosan/beeswax colorimetric papers for monitoring kiwifruit maturity. International Journal of Biological Macromolecules, 187, 566-574.
-Marzbani, P., Azadfallah, M., Yousefzadeh, M., Najafi, F., Pourbabaee, A.A., Koivula, H. & Ritala, M., 2021. Effect of polyethylene wax/soy protein-based dispersion barrier coating on the physical, mechanical, and barrier characteristics of paperboards. Journal of Coatings Technology and Research, 18, 247-257.
-Monedero, F.M., Fabra, M.J., Talens, P. & Chiralt, A., 2009. Effect of oleic acid–beeswax mixtures on mechanical, optical and water barrier properties of soy protein isolate based films. Journal of Food Engineering, 91(4), 509-515.
-Mousavipazhouh, H., Azadfallah, M. & Jouybari, I.R., 2018. Encapsulation of precipitated calcium
carbonate fillers using carboxymethyl cellulose/polyaluminium chloride: Preparation and its influence on mechanical and optical properties of paper. Maderas. Ciencia y tecnología, 20(4), 703-714.
-Strand, A., Sundberg, A., Retulainen, E., Salminen, K., Oksanen, A., Kouko, J. & Rojas, O., 2017. The effect of chemical additives on the strength, stiffness and elongation potential of paper. Nordic Pulp & Paper Research Journal, 32(3), 324-335.
-Vaithanomsat, P., Kongsin, K., Trakunjae, C., Boonyarit, J., Jarerat, A., Sudesh, K. & Chollakup, R., 2021. Biosynthesized Poly (3-Hydroxybutyrate) on coated pineapple leaf fiber papers for biodegradable packaging application. Polymers, 13(11), 1733.
-Yun, T., Tao, Y., Li, Q., Cheng, Y., Lu, J., Lv, Y. & Wang, H., 2023. Superhydrophobic modification of cellulosic paper-based materials: Fabrication, properties, and versatile applications. Carbohydrate Polymers, 305, 120570.
-Zhang, W., Lu, P., Qian, L., & Xiao, H. (2014). Fabrication of superhydrophobic paper surface via wax mixture coating. Chemical Engineering Journal, 250, 431-436.
-Zhang, W., Xiao, H. & Qian, L., 2014. Beeswax–chitosan emulsion coated paper with enhanced water vapor barrier efficiency. Applied Surface Science, 300, 80-85.