- Akiyama, K., Matsuzaki, K.I. and Hayashi, H., 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi, Nature, 435(9), pp.824–827, https://doi 10.1038/nature03608.
- Akiyama, K. and Hayashi, H., 2006. Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Annals Botany, 97(6), pp.925–931, https://doi 1093/aob/mcl063.
- Aono, T., Maldonado-Mendoza, I.E., Dewbre, G.R., Harrison, M. J. and Saito, M., 2004. Expression of alkaline phosphatase genes in arbuscular mycorrhizas. New Phytologist, 162(2), pp.525–534, https://doi org/10.1111/j.1469-8137. 2004. 01041.x.
- Aroca, R., Bago, A., Sutka, M., Paz, J.A., Cano, C., Amodeo, G. and Ruiz-Lozano, J.M., 2009. Expression analysis of the first arbuscular mycorrhizal fungi aquaporin described reveals concerted gene expression between salt-stressed and non-stressed mycelium. Molecular Plant–Microbe Interactions, 22(9), pp.1169–1178, https://doi.org/10.1094/MPMI-22-9-1169.
- Asazadeh, K., Nadian, H., Siapoush, A., Keshvarz. T., 1400. The effect of plant growth stimulating rhizospheric bacteria and filter cake on the growth and concentration of nutrients in spinach in interaction with herbicide. journal of Water and Soil, The University of Ferdousi, 35(4), pp. 583-597 (In Persian).
- Aung, K., Lin, S.I., Wu, C.C., Huang, Y.T., Su, C.L. and Chiou, T.J., 2006. Pho2, a phosphate over accumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiology, 141(3), pp.1000–1011. https://doi.org/10.1104/pp.106.078063.
- Ayadi, A., David, P., Arrighi, J.F., Chiarenza, S., Thibaud, M.C., Nussaume, L., and Marin, E., 2015. Reducing the genetic redundancy of Arabidopsis PHT1 transporters to study phosphate uptake and signaling. Plant Physiology, 167(4), pp.1511–1526. https://doi.1104/pp.114.252338.
- Balzergue, C., Puech-Pagès, V., Bécard, G. and Rochange, S.F., 2011. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events, Journal of Experimental Botany, 62, pp.1049–1060, https://doi.1093/jxb/erq335.
- Balzergue, C., Chabaud, M., Barker, D.G., Becard, G. and Rochange, S.F. 2013. High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Science, 4, pp.426. Published online, https://doi. 3389/fpls.2013.00426.
- Bari, R., Pant, B.D., Stitt, M. and Scheible, W.R., 2006: PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiology, 141(3), pp.988–999. https://doi.org/10.1104/pp.106.079707.
- Beever, R.E. and Burns, D.J.W., 1980. Phosphorus uptake, storage and utilisation by fungi. Advances in Botanical Research, 8, pp.127–219, https://doi.org/10.1016/S0065-2296(08)60034-8.
- Benedetto, A., Magurno, F., Bonfante, P. and Lanfranco, L., 2005. Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae, Mycorrhiza, 15(8), pp.620–627, https://doi.10.1007/s00572-005-0006-9.
- Besserer A., Becard, G., Jauneau, A., Roux, C. and Sejalon-Delmas, N. 2008. A synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiology, 148(1), pp. 402–413, https://doi. 1104/pp.108.121400.
- Besserer, A., Puech-Pages, V., Kiefer, P., Gomez-Roldan, V., Jauneau, A., Roy, S., Portais, J.C., Roux, C., Becard, G. and Sejalon-Delmas, N., 2006. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biology, 4 (7), pp. (e) 226. https://doi.10.1371/journal.pbio.0040226.
- Branscheid, A., Sieh, D., Pant, B.D., May, P., Devers, E.A., Elkrog, A., Schauser, L., Scheible, W. and Krajinski, F., 2010. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis, Molecular Plant Microbe-Interaction, 23(7), pp.915–926, https://doi.10.1094/MPMI-23-7-0915.
- Brewster, J.L. and Tinker, P.B.H., 1972. Nutrient flow rates into roots. Soils and Fertilizers, 35, pp.355-359.
- Breuillin, F., Schramm, J., Hajirezaei, M., Ahkami, A., Favre, U., Hause, B., Bucher, M., Kretzschmar, , Bossolini, E., Kuhlemeier, C., Martinoia, E., Franken, P., Scholz, U. and Reinhardt, D., 2010. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant Journal, 64(6), pp.1002-1017. https://doi.10.1111/j.1365-313X.2010.04385. x.
- Brundrett, M.C. and Kendrick, B., 1988. The mycorrhizal status, root anatomy and phenology of plants in a sugar maple forest. Canadian Journal of Botany, 66, pp.1153–1173, https://doi.org/10.1139/b88-166.
- Bulgarelli, R.G., De Oliveira, V.H. and de Andrade, S.A.L., 2020. Arbuscular mycorrhizal symbiosis alters the expression of PHT1 phosphate transporters in roots and nodules of P-starved soybean plants. Theoretical Experimental Plant Physiological, 32(3), pp.243–253, https://doi.1007/s40626-020-00185-8.
- Ceasar, S.A., Hodge, A., Baker, A. and Baldwin, S. A., 2014. Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica). PLoS One, 9(9), pp.(e)108459, https://doi.1371/journal.pone.0108459.
- Ceasar, S.A., Baker, A. and Ignacimuthu, S., 2017. Functional characterization of the PHT1 family transporters of foxtail millet with development of a novel Agrobacterium-mediated transformation procedure. Scientific Reports, 7(1), pp.14064, https://doi.1038/s41598-017-14447-0.
- Chabaud, M., Genre, A., Sieberer, B.J., Faccio, A., Fournier, J., Novero, M., Barker, D.G. and Paola Bonfante, P., 2011. Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis. New Phytology, 189 (1), pp.347-355, https://doi.org/10.1111/j.1469-8137. 2010. 03464.x.
- Chandrasekaran, M. 2022. Arbuscular mycorrhizal fungi mediated alleviation of drought stress via non-Enzymatic antioxidants: A meta-analysis. Plants, 11(19), pp.2448, https://doi.org/10.3390/plants11192448.
- Chiou, T.J., Liu, H. and Harrison, M.J., 2011. The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. Plant Journal, 25(3), 281–293, https://doi.10.1046/j.1365-313x.2001. 00963.X.
- Chiu, C.H. and Paszkowski, U. 2019. Mechanisms and impact of symbiotic phosphate acquisition. Cold Spring Harbor Perspectives in Biology, 11(6), 034603, https://doi.10.1101/cshperspect.a
- Chen, A., Hu, J., Sun, S. and Xu, G., 2007. Conservation and divergence of both phosphate-and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytologist, 173(4), pp.817–831, https://doi.org/10.1111/j.1469-8137.2006.01962.x.
- Chen, A., Chen, X., Wang, H., Liao, D., Gu, M., Qu, H., Sun, S. and Xu, G., 2014. Genome-wide investigation and expression analysis suggest diverse roles and genetic redundancy of Pht1 family genes in response to Pi deficiency in tomato. BMC Plant Biology, 14(1), 61, https://doi.10.1186/1471-2229-14-61.
- Chen, J., Guo, J., Li, Z., Liang, X., You, Y., Li, M., He, Y. and Zhan, F., 2022. Effects of an arbuscular mycorrhizal fungus on the growth of and cadmium uptake in maize grown on polluted wasteland, farmland and slope land soils in a Lead-Zinc mining area. 10 (7), pp.359. https://doi.10.3390/toxics10070359.
- Chen, W., Ye, T., Sun, Q., Niu, T. and Zhang, J., 2021. Arbuscular mycorrhizal fungus alters root system architecture in Camellia sinensis L. as revealed by RNA-Seq analysis. Frontier Plant Science, 12, 777357. https://doi.3389/fpls.2021.777357.
- Cooper, K.M. and Tinker, P.B., 1981. Translocation and transfer of nutrients in vesicular arbuscular mycorrhizas, Environmental variable of movement of phosphorus. New Phytologist, 88, pp.327-339.
- Cox, G. and Tinker, P.B., 1976. Translocation and transfer of nutrients in vesicular-arbuscular mycorrhiza. I. The arbuscule and phosphorus transfer: a quantitative ultrastructural study. New Phytologist, 77, pp.371-378.
- Das, , Paries, M., Hobecker, K., Gigl, M., Dawid, C., Lam, H.M., Zhang, J., Chen, M. and Gutjahr, C., 2022. Phosphate starvation response transcription factors enable arbuscular mycorrhiza symbiosis. Nature Communications, 13,477, https://doi.org/10.1038/s41467-022-27976-8.
- de Souza Campos, P.M., Cornejo, P., Rial, C., Borie, F., Varela, R.M., Seguel, A. and López-Ráez, J.A., 2019. Phosphate acquisition efficiency in wheat is related to root:shoot ratio, strigolactone levels, and PHO2 regulation. Journal of Experimental Botany, 70(20), pp.5631–5642, https://doi.org/10.1093/jxb/erz- 349.
- Drissner, D., Kunze, G., Callewaert, N., Gehrig, P., Tamasloukht, M., Boller, T., Felix, G., Amrhein, N. and Bucher, M., 2007. Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis, Science, 318, pp.265–268. https://doi. 10.1126/science.1146487.
- Ezawa, T. and Saito, K., 2018. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine‐tuning of phosphate metabolism, New Phytologist, 220(4), pp.1116-1121. https://doi. org/10.1111/nph.15187. newphytologist.com.
- Ezawa, T., Smith, S.E. and Smith, F.A., 2002. P metabolism and transport in AM fungi. Plant and Soil, 244(1-2), pp.221-230, https://doi. 10.1023/A:1020258325010.
- Ezawa, T., Cavagnaro, T.R., Smith, S.E., Smith, F.A. and Ohtomo, R., 2004. Rapid accumulation of polyphosphate in extraradical hyphae of an arbuscular mycorrhizal fungus as revealed by histochemistry and a polyphosphate kinase/luciferase system. New Phytologist, 161(2), 387–392, https://doi.org/10.1046/j.1469-8137.2003.00966.x.
- Ezawa, T., Smith, S.E. and Smith, F.A., 2001. Enzyme activity involved in glucose phosphorylation in two arbuscular mycorrhizal fungi: indication that polyP is not the main phosphagen. Soil Biology and Biochemistry, 33(9), 1279–1281, https://doi.1016/s0038-0717(01)00007-4
- Fan, C., Wang, X., Hu, R., Wang, Y., Xiao, C., Jiang, Y., Zhang, X., Zheng, C. and Fu, Y.F., 2013. The pattern of Phosphate transporter 1 genes evolutionary divergence in Glycine max L. BMC Plant Biology, 48(13), https://doi.1186/1471-2229-13-48.
- Fellbaum, C.R., Mensah, J.A., Cloos, A.J., Strahan, G.E., Pfeffer, P.E., Kiers, E.T. and Bucking, H., 2014. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytologist, 203(2), pp.646–656. https://doi.10.1111/nph.12827.
- Ferrol, , Azc´on-Aguilar, C. and P´erez-Tienda, J., 2018. Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: An overview on the mechanisms involved. Plant Science, 280, pp.441-447, https://doi.org/10.1016/j.plantsci.2018.11.011.
- Filho, J.A.C. 2022, Mycorrhizal association and plant disease protection: New perspective. In: Arbuscular mycorrhizal fungi in agriculture, new sights. https://doi.10.5772/intechhopen.108538.
- Floss, D.S., Levy, J.G., Lévesque-Tremblay, V., Pumplin, N. and Harrison, M.J., 2013. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proceedings of the Academy of Sciences, 110(51), pp.5025-5034, https://doi.10.1073/pnas.1308973110.
- Ghasemi, Z., Nadian, H. and Khalilimoghadam, B., 2022. Effects of arbuscular mycorrhiza fungi and salinity stress on morphological characteristics, uptake of some nutrients and soil aggregate stability in three different plants. Journal of Soil Management and Sustainable of Production, 12, pp.45-65, https://doi.22069/EJSMS.2022.19277.2036.
- Genre, A., Chabaud, M., Balzergue, C., Rey, T., Fournier, J., Rochange, S., Bécard, |G., Bonfante, P. and Barker, D.G., 2013. Short‐chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone, New Phytologist, 198, pp.190–202, https://doi.org/10.1111/nph.12146.
- Gharrineh, M.H. Nadian, H., Fathi, G., Siadat, A. and Moadi, B., 2009. Role of arbuscular mycorrhizae in development of salt-tolerance of Trifolium alexsandrinum plants under salinity stress. Journal of Food Agriculture & Environment, 7 (3), pp.432-437, https://doi.1007/978-3-319-57849-1_5.
- Ghanavati, N., Nadian, H., Moezi, A.A. and Rejali, F. 2012. Effects of sewage sludge on growth and nutrients uptake by Hordum Vulgare as affected by two species of arbuscular-mycorrhizal fungi. Advances in Environmental Biology, 6(2), pp.612-617.
- Ghasem jokar, N., Nadian, H., Khalilimoghadam, B., Haydari, M., 1392. The effect of arbuscular mycorrhizal fungi and drought stress on root growth, proline accumulation and uptake of some nutrients by three leek genotypes. Journal of Soil Biology, 1(2), 1392. pp.93-105 (In Persian).
- Ghasem jokar, N., Nadian, H., Khalilimoghadam, B., Haydari, M., 1394. The effect of arbuscular mycorrhizal fungus and drought stress on some macronutrients by three leek genotypes with different root characteristics. Journal of Water and Soil, The University of Ferdousi, 29(1), pp.198-209 (In Persian).
- Giovannini,, Sbrana, C. and Avio, L., 2020. Diversity of a phosphate transporter gene among species and isolates of arbuscular mycorrhizal fungi. FEMS Microbiology Letters, 36 (2), https://doi.org/10.1093/femsle/fnaa024.
- Gomez, S.K., Javot, H., Deewatthanawong, P., TorresJerez, I.,Tang, Y., Blancaflor, E.B., Udvardi, M.K. and Harrison, M.J., 2009. Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biology, 9(10), pp.1-19, https://doi 10.1186/1471-2229-9-10.
- Graham,H., Duncan, L.W. and Eissenstat, D.M., 1997. Carbohydrate allocation patterns in citrus genotypes as affected by phosphorus nutrition, mycorrhizal colonisation and mycorrhizal dependency. New Phytologgist,135: 135(2), pp.335-343, https://doi.org/10.1046/j.1469-8137.1997.00636.x.
- Gronlud, M., Albrechtsen, M. and Johansen, E., 2013. The interplay between P uptake pathways in mycorrhizal peas: A combined physiological and gene-silencing approach. Physiologia Plantarum 149(2), pp.234-248, https://doi.1111/ppl.12030.
- Gu, M., Liu, W., Meng, Q., Zhang, W., Chen, A., Sun, S. and Xu, G., 2014. Identification of microRNAs in six solanaceous plants and their potential link with phosphate and mycorrhizal signaling. Journal of Integrative Plant Biology, 56(12), pp.1164–1178., https://doi..org/10.1111/jipb.12233.
- Guo, C., Guo, L., Li, X., Gu, J., Zhao, M., Duan, W., Ma, C., Lu, W. and Xiao, K., 2014. TaPT2, a high-affinity phosphate transporter gene in wheat (Triticum aestivum L.), is crucial in plant Pi uptake under phosphorus deprivation. Acta Physiologae Plantarum, 36(6), pp.1373–1384. https://doi.1007/s11738-014-1516-x.
- Guo, B. Jin, Y., Wussler, C., Blacaflor, E.B., Motes, C.M. and Versaw, W.K., 2008. Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytologist, 177(4), pp.889 – 898, https://doi.10.1111/j.1469-8137.2007.02331.x. Epub 2007 Dec 12.
- Hamburger, D., Rezzonico, E., MacDonald-Comber Petétot, J., Somerville, C. and Poirier, Y., 2002. Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell, 14(4), pp.889–902, https://doi.org/10.1105/tpc.000745.
- Harrison, M.J. and van Buuren, M.L., 1995. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature, 6557(378), pp.626–629, https://doi.10.1038/378626a0.
- Helber, N., Wippel, K., Sauer, N., Schaarschmidt, S., Hause, B. and Requena, N., 2011. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell, 23(10), pp.3812-3823, https://doi.10.1105/tpc.111.089813.
- Hestrin, R., Hammer, E.C., Muller, C.W. and Lehman, J., 2019. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Communications Biology, 2(1), pp.233, https://doi.org/10.1038/s42003-019-0481-8.
- Hettrick, B.A.D., 1991. Mycorrhizas and root architecture. Experientia 47, pp.355-362, https://doi.org/10.1007/BF01972077.
- Jakobsen, I., Abbott, L.K. and Robson, A.D. 1992. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytologist, 120(3), pp.371-380, https://doi.org/10.1111/j.1469-8137.1992.tb01077.x.
- Janes, G., Wangenheim, D.V., Cowling, S., Kerr, I., Band, L., French, A.P. and Anthony Bishopp, A., 2018. Cellular patterning of Arabidopsis roots under low phosphate conditions. Frontiers in Plant Science, 9, pp.735, https://doi.org/10.3389/fpls.2018.00735.
- Jia, H., Ren, H., Gu, M., Zhao, J., Sun, S., Zhang, X., Chen, J., Wu, P. and Xu, G., 2011. The phosphate transporter gene OsPht1; 8 is involved in phosphate homeostasis in rice. Plant Physiology, 156(3), pp.1164–1175, https://doi.1104/pp.111.175240.
- Kiers, E.T., Duhamel, M., Beesetty, Y., Mensah, J.A., Franken, O., Verbruggen, E., Fellbaum,C.R., Kowalchuk, G.A., Hart, M.M., Bago, A., Palmer, T.M., West, S.A., Vandenkoornhuyse, P., Jansa, J. and Bücking, H., 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333(6044), pp.880–882. 333(6044):880-2, https://doi.10.1126/science.1208473.
- Kikuchi, Y., Hijikata, N., Yokoyama, K., Ohtomo, R., Handa, Y. and Ezawa T., 2014. Polyphosphate accumulation is driven by transcriptome alterations that lead to near-synchronous and near-equivalent uptake of inorganic cations in an arbuscular mycorrhizal fungus. New Phytologist, 204(3), pp.638–649, https://doi.org/10.1111/nph.12937.
- Kikuchi, Y., Hijikata, N., Ohtomo, R., Handa, Y., Kawaguchi, M., Saito, K., Masuta, C. and Ezawa, T., 2016. Rapid report directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing, New Phytologist, 211(4), pp.1202–1208, https://doi.org/10.1111/nph.14016.
- Lanfranco, , Fiorilli, V., Venice, F. and Bonfante, P., 2018. Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. Journal of Experimental Botany, 69(9), pp.2175–2188, https://doi.org/10.1093/jxb/erx432.
- Lambers, H. 2022. Phosphorus acquisition and utilization in plants. Annual Review of Plant Biology, 73, pp.17–42. https://doi.org/10.1146/annurev-arplant-102720-125738.
- Lapis-Gaza, H.R., Jost, R. and Finnegan, P.T., 2014. Arabidopsis phosphate transporters1 genes PHT1;8 and PHT1;9 are involved in root-to-shoot translocation of orthophosphate. BMC Plant Biology, 14(1), pp.334, https://doi.org/10.1186/s12870-014-0334-z.
- Li, T., Hu, Y.J., Hao, Z.P., Li, H., Wang, Y.S. and Chen, B.D., 2013. First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist, 197(2), pp.617–630, https://doi.1111/nph.12011.
- Liao, D, Sun, C., Liang, H., Wang, Y., Bian, X., Dong, C., Niu, X., Yang, M., Xu, G., Chen, A. and Wu, S., 2022. SlSPX1-SlPHR complexes mediate the suppression of arbuscular mycorrhizal symbiosis by phosphate repletion in tomato. Plant Cell, 34, pp.4045–4065, https://doi. org/10.1093/plcell/koac212.
- Lopez-Obando, M., Ligerot Y., Bonhomme, S., Boyer, F.D. and Rameau, C., 2015. Strigolactone biosynthesis and signaling in plant development. Development, 142(21), pp.3615–3619, https://doi. org/10.1242/dev.120006.
- Liu, X., Zhao, X., Zhang, L., Lu, W., Li, X. and Xiao, K., 2013. TaPht1; 4, a high-affinity phosphate transporter gene in wheat (Triticum aestivum), plays an important role in plant phosphate acquisition under phosphorus deprivation. Functional Plant Biology. 40(4), 329–341, https://doi.1071/FP12242.
- Liu, F., Xu, Y., Jiang, H., Jiang, C., Du, Y., Gong, C., Wang, W., Zhu, S., Han, G. and Cheng, B., 2016. Systematic identification, evolution and expression analysis of the Zea mays PHT1 gene family reveals several new members involved in root colonization by arbuscular mycorrhizal fungi. Internation Journal of Molecular Science, 17(6), pp.930, https://doi.10.3390/ijms17060930.
- Liu, N., Shang, W, Li, C., Jia, L., Wang, X., Xing, G. and WenMing Zheng, W., 2018. Evolution of the SPX gene family in plants and its role in the response mechanism to phosphorus stress. Open Biology, 8(1): pp.170231, https://doi.1098/rsob.170231.
- Liu, F., Cai, S., Dai, L. and Baoliang Zhou, B., 2023. Two Phophate-transporter genes in cotton enhance tolerance to phosphorus starvation. Plant Physiology and Biochemistry, 204(20), pp.108128. https://doi.10.1016/j.plaphy.2023.108128.
- Maeda, D., Ashida, K., Iguchi, K., Chechetka, S. A., Hijikata, A., Okusako, Y., Deguchi, Y., Izui, K. and Hata, S., 2006. Knockdown of an arbuscular mycorrhiza inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant and Cell Physiology, 47(4), pp. 807–817, https://doi.10.1093/pcp/pcj069.
- Maillet, , Poinsot, V., André, O., Puech-Pagès, V., Haouy, A., Gueunier, M., Cromer, L., Giraudet, D., Formey, D., Niebel, A., Martinez, E.A., Driguez, H., Bécard, G. and Dénarié, J., 2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza, Nature, 7328(469), pp.58–63, https://doi.10.1038/nature09622.
- Maldonado-Mendoza, I.E., Dewbre, G.R. and Harrison, M.J., 2001. A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment, Molecular Plant- Microbe Interaction, 14(10), pp.1140–1148. https://doi. 10.1094/MPMI.2001.14.10.1140.
- Marschner, P., 2012. Mineral nutrition of higher plants. Third addition, Copyright, Academic Press is an imprint of Elsevier, Elsevier San Diego. Mashiguchi, K., Seto, Y. and Yamaguchi, S., 2021. Strigolactone biosynthesis, transport and perception. The Plant Journal, 105(2), pp.335–350, https://doi.10.1111/tpj.15059.
- Mashiguchi, K., Seto, Y. and Yamaguch, S., 2021.Strigolactone biosynthesis, transport and perception. The plant Journal, 10(2), pp. 335-350, https://doi.org/10.1111/tpj.15059.
- Minaxi, J., Saxena, J., Chandra, S. and Nain, L., 2013. Synergistic effect of phosphate solubilizing rhizobacteria and arbuscular mycorrhiza on growth and yield of wheat plants. Journal of Soil Science and Plant Nutrition, 13(2), pp.511-525, https://doi.org/10.4067/S0718-95162013005000040.
- Mitsukawa, N., Okumura, S., Shirano, Y., Sato, S., Kato, T., Harashima, S. and Shibata, D., 1997. Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proceedings of the National Academy of Sciences, 94(13), pp.7098–7102, https://doi.1073/pnas.94.13.7098.
- Muchhal, U.S., Pardo, J.M. and Raghothama, K.G., 1996. Phosphate transporters from the higher plant Arabidopsis thaliana. Proceeding of National Academic Science, 93(19), pp.10519–10523, https://doi.org/10.1073/pnas.93.19.10519.
- Munkvold, L., Kjøller, R., Vestberg, M., Rosendahl, S. and Jakobsen, I., 2004. High functional diversity within species of arbuscular mycorrhizal fungi. New Phytologist, 164(2), 357-364, https://doi.org/10.1111/j.1469-8137.2004.01169.x.
- Nacoon, S., Jogloy , S., Riddech , N., Mongkolthanaruk , W., Kuyper , T.W. and Boonlue , S., 2020. Interaction between Phosphate Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Growth Promotion and Tuber Inulin Content. Scientific Reports, 10(1), pp.4916, https://doi.10.1038/s41598-020-61846-x.
- Nadian, H., Smith, S.E., Alston, A.M. and Murray, R.S., 1996. The effect of soil compaction on growth and P uptake by Trifolium subterraneum: interactions with mycorrhizal colonisation. Plant and Soil, 182(1), pp.39-49, https://doi.10.1007/bf00010993.
- Nadian, H. 1997. Effect of soil compaction on growth and P uptake Trifolium subterranean L. colonized by arbuscular mycorrhizal fungi. Ph.D. thesis, The University of Adelaide, Adelaide, Waite Campus, Soil Science Department.
- Nadian, H, Smith, S.E., Alston, A.M., Murray, R.S. and Siebert, B.D., 1998. Effects of soil compaction on phosphorus uptake and growth of P Trifolium subterraneum colonized by four species of vesicular-arbuscular mycorrhizal fungi. New Phytologist, 140(1), pp.155-165, https://doi.10.1046/j.1469-8137.1998. 00219.x.
- Nadian, H., Hashemi, A. and Herbert, S.J., 2009. Soil aggregate size and mycorrhizal colonization effect on root growth and P accumulation by berseem clover. Communication in Soil Science and Plant Analysis, 40(15), 2413-2425, https://doi.org/10.1080/00103620903111319.
- Nadian, H., Fathi, G., Abdollahi, M., 2013. Phosphorus inflow into two species of clover root with different morphology colonized by AM Fungi. Iran Agricultural Research, 32(1), pp.40-54, https://doi.22099/iar.2013.1816.
- Nadian, H., 1390. The effect of drought stress and mycorrhizal symbiosis on the growth and P uptake by two sorghum cultivars different in their root morphology. Journal of Water and Soil Sciences, Esfahan University of Technology, 15(57), pp.25-32 (In Persian).
- Nagahashi, G. and Douds, D.D., 2011. The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi. Fungal Biology, 115(4-5), pp.351–358, https://doi.org/10.1016/j.funbio.2011.01.006.
- Nagy, R., Drissner, D., Amrhein, N., Jakobsen, I. and Bucher, M., 2009. Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated, New Phytologist, 181(4), pp.950–959, https:// https://doi.10.1111/j.1469-8137.2008. 02721. X.
- Navarro-Torre, S., Garcia-Caparros, P., Nogales, A., Abeu, M., Santos, E., Cortinhas, A.L. and Caperta, A.D., 2023. Sustainable agricultural management of saline soils in arid and semi-arid Mediterranean regions through halophytes, microbial and soil-based technologies. Environmental and Experimental Botany, 212, pp.105397, https://doi.org/10.1016/j.envexpbot.2023.105397.
- Nehls, U. and Dietz, S., 2014. Fungal aquaporins: cellular functions and ecophysiological perspectives. Applied Microbiology and Biotechnology, 98(21), pp.8835-51, doi.10.1007/s00253-014-6049-0.
- Nguyen, C.T. and Saito, K., 2021. Role of Cell Wall Polyphosphates in Phosphorus Transfer at the Arbuscular Interface in Mycorrhizas. Frontier in Plant Science. 12,725939. https://doi.org/10.3389/fpls.2021.725939.
- Nguyen, C.T., Ezawa, T. and Saito, K., 2022. Polyphosphate polymerizing and depolymerizing activity of VTC4 protein in an arbuscular mycorrhizal fungus, Soil Science and Plant Nutrition, 68(2), pp.256-267, https://doi.org/10.1080/00380768.2022.2029220.
- Nourali, A. Nadian, H., Jafari, S., Haydari, M., 1397. The effect of salinity and cadmium on some components of growth and uptake of micronutrient by plants. Journal of Environmental Stresses in Crop Sciences. 11(3), pp.737-748 (In Persian).
- Nussaume, L., Kanno, S., Javot, H., Marin, E., Nakanishi, T.M. and Thibaud, M.C., 2011. Phosphate imports in plants: focus on the PHT1 transporters. Frontier Plant Science, 2, pp.83, https://doi.3389/fpls.2011.00083.
- Olsson, P.A., Baath, E., Jakobsen, I. and Soderstrom, B. 1995. The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycology Research. 99(5), pp.623-629. https://doi.org/10.1016/S0953-7562(09)80723-5.
- Olsson, P. A., van Aarle, I. M., Allaway, W. G., Ashford, A. E. and Rouhier, H., 2002. Phosphorus effects on metabolic process in monoxenic arbuscular mycorrhiza cultures. Plant Physiology, 130(3), pp.1162–1171, https://doi.1104/pp.009639.
- Padje, A.V., Werner, G.D.A. and Toby Kiers, E.T., 2020. Mycorrhizal fungi control phosphorus value in trade symbiosis with host roots when exposed to abrupt ‘crashes’ and ‘booms’ of resource availability. New Phytologist, 229(5), pp.2933–2944, https://doi.10.1111/nph.17055.
- Pant, B.D., Buhtz, A., Kehr, J. and Scheible, W. 2008. MicroRNA399 is a long‐distance signal for the regulation of plant phosphate homeostasis, Plant Journal, 53(5), pp.731–738, https://doi.1111/j.1365-313X.2007.03363.x.
- Pearson, J.N. and Jakobsen. I., 1993. Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi. New Phytologist, 124(3), pp.481–488, https://doi.org/10.1111/j.1469-8137. 1993. tb 03839.x.
- Qin, L., Guo, Y., Chen, L., Liang, R., Gu, M., Xu, G., Zhao, J., Walk, T. and Liao, H., 2012. Functional characterization of 14 Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean. PLoS One 7(10), pp. e47726, https://doi.10.1371/journal.pone.0047726.
- Rae, A.L., Cybinski, D.H., Jarmey, J.M. and Smith, F.W., 2003. Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family. Plant Molecular Biology, 53(1-2), pp.27–36, https://doi.10.1023/b: plan.0000009259.75314.15.
- Rasmussen, N., Lloyd, D. C., Ratcliffe, R. G., Hansen, P. E. and Jakobsen, I., 2000. 31P NMR for the study of P metabolism and translocation in arbuscular mycorrhizal fungi. Plant and Soil, 226(2), pp.245–253, https://doi.10.1023/A:1026411801081.
- Rausch, C., Daram, P., Brunner, S., Jansa, J., Laloi, M., Leggewie, G., Amrhein, N. and Bucher, M., 2001. A phosphate transporter expressed in arbuscule-containing cells in potato. Nature, 6862(414), pp.462–466. https://doi.10.1038/35106601.
- Roch, G.V., Maharajan, T., Ceasar, S.A. and Ignacimuthu, S., 2019. The Role of PHT1 family transporters in the acquisition and redistribution of phosphorus in plants. Critical Review in Plant Sciences, 38(3), pp.171-198, https://doi.org/10.1080/07352689.2019.1645402.
- Salehi Jozani, G. Akbari Vala, S., Morsali, H., 1390. Isolation and identification of dominant arbuscular mycorrhizal fungi in the rhizosphere of wheat, barley and weeds in some saline agricultural areas of Iran. Biotechnology of Crop Plants, 1(1), pp.61-75 (In Persian).
- Salimi, G., Fayzian, M., Aliasgharzad, N. 1399. The effect of inoculation with mycorrhizal fungi on the absorption of nutrients and essential components of Dracocephalum moldavica L. under drought stress. Ecophysiology of Crop Plants. 55(4), pp.325-344 (In Persian).
- Siami, A., Aliasgharzad, N., Aghebati Malaki, L., Najafi, N., Shahbazi, F., 1402. Ecological study of the symbiosis of arbuscular fungi in agricultural and pasture ecosystems (case study of Sarab region, East Azarbaijan province), Knowledge of Agriculture and Sustainable Production. Pp.1-16.
- Sanders, F.E., Mosse, B. and Tinker, P.B., 1975. The effect of foliar-applied phosphate on the mycorrhizal infection of onion roots, in: F.E. Sanders, B. Mosse, P.B. Tinker (Eds.). Endomycorrhizas, Academic Press, London, pp. 261–276.
- Sánchez-Calderón, L., López-Bucio, J., Chacón-López, A., Cruz-Ramírez, A., Nieto-Jacobo, F., Dubrovsky, J.G. and Herrera-Estrella, L., 2005. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiology, 46, pp.174–184, https://doi.org/10.1093/pcp/pci011.
- Shi, , Zhao, B., Zheng, S., Zhang, X., Wang, X., Dong, W., Xie, Q., Wang, G., Xiao, Y., Chen, F., Nan Yu, N. and Wang, E., 2021. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell 184, pp.5527–5540, https://doi.org/10.1016/j.cell.2021.09.030.
- Shu, B., Xia, R.X. and Wang, P., 2012. Differential regulation of Pht1 phosphate transporters from trifoliate orange (Poncirus trifoliata L. Raf) seedlings. Science Horticulture, 146, pp.115–123, https://doi.org/10.1016/j.scienta.2012.08.014.
- Smith, F.A. and Smith, S.E., 1996. Mutualism and parasitism: diversity in function and structure in the ‘arbuscular’ (VA) mycorrhizal symbiosis. Advances in Botanical Research 22, pp.1–43, https://doi.1016/S0065-2296(08)60055-5.
- Smith, S. E., Dickson, S., Morris, C. and Smith, F. A., 1994. Transfer of phosphate from fungus to plant in VA mycorrhizas: calculalfion of the area of symbiotic interface and of fluxes of P from two different fungi to Allium Porrum L. New Phytologist, 127(1), pp.93-99, https://doi.10.1111/j.1469-8137.1994.tb04262.x.
- Smith, S.E., Smith, F.A. and Jakobsen, I., 2003. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses, Plant Physiology, 133(1), pp.16–20, https://doi.10.1104/pp.103.024380.
- Smith, S.E., Smith, F.A., 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales, Annual Review Plant Biology, 62(1), pp.227–250, https://doi.org/10.1146/annurev-arplant-042110-103846.
- Smith, S.E. and Read, D.J. 2008. Mycorrhizal symbiosis. Third edition, Academic Press, London.
- Souza Buzo, D., Gare, L.M., Siviero Garcia, N.F., Andrade Silva, M.S.R., Martins, J.T., Giova da Silva, P.H., Meireles, F.C., de Souza Sales, L.Z., Nogales, A., Rigobelo, E.C. and Arf, O., 2023. Effect of mycorrhizae on phosphate fertilization efficiency and maize growth under field conditions. Scientific Reports, 13(1), pp.3527. https://doi.org/10.1038/s41598-023-30128-7.
- Sukarno, N., Smith, F.A., Smith, S.E. and Scott, E.S., 1996. The effect of fungicides on vesicular-arbuscular mycorrhizal symbiosis. II. The effects on area of interface and efficiency of P uptake and transfer to plant. New Phytologist, 132(4), pp.583–592, https://doi.org/10.1111/j.1469-8137.1996. tb 01877.x.
- Sun, T., Li, M., Shao, Y., Yu, L. and Ma, F., 2017. Comprehensive genomic identification and expression analysis of the phosphate transporter (PHT) gene family in apple. Frontier Plant Science, 8, pp.426., https://doi.10.3389/fpls.2017.00426.
- Svistoonoff, S., Creff, A, Reymond, M., Sigoillot-Claude, C., Ricaud, L., Blanchet, A., Nussaume, L. and Desnos, T. 2007. Root tip contact with low- phosphate media reprograms plant root architecture. Nature Genetics, 39(6):792–796, https://doi.org/10.1038/ng2041.
- Takanishi, I., Ohtomo, R., Hayatsu, M. and Saito, M., 2009. Short-chain polyphosphate in arbuscular mycorrhizal roots colonized by Glomus spp.: A possible phosphate pool for host plants. Soil Biology and Biochemistry 41(7), pp.1571-1573, https://doi.org/10.1016/j.soilbio.2009.04.002.
- Tawaraya, K.M., Saito, M., Morioka, M. and Wagatsuma, T., 1996. Effect of Concentration of Phosphate on Spore Germination and Hyphal Growth of Arbuscular Mycorrhizal Fungus, Gigaspora Margarita Becker & Hall.” Soil Science and Plant Nutrition, 42(3), pp.667-671, https://doi.org/10.1080/00380768.1996.10416336.
- Thibaud, M.C., Arrighi, J.F., Bayle V., Chiarenza, S., Creff A, Regla Bustos, R., Javier Paz-Ares, J., Yves Poirier, Y. and Nussaume, L., 2010. Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. The Plant Journal, 64(5), pp.775-89, https://doi.10.1111/j.1365-313X.2010.04375. x.
- Tian, H., Wang, R., Li, M., Dang, H. and Solaiman, Z.M. 2019. Molecular signal communication during arbuscular mycorrhizal formation induces significant transcriptional reprogramming of wheat (Triticum aestivum) roots. Annals of Botany, 124(6), 1109–1119, https://doi.10.1093/aob/mcz119.
- Todeschini, V., Anastasia, F., Massa, N., Marsano, F., Cesaro, P., Bona, E., Gamalero, E., Oddi, L. and Lingua, G. 2022. Impact of phosphatic nutrition on growth parameters and artemisinin production in Artemisia annua Plants Inoculated or not with Funneliformis mosseae. Life,12(4), pp.497, https://doi.3390/life12040497.
- Uetake, Y., Kojima, T., Ezawa, T. and Saito, M. 2002. Extensive tubular vacuole system in an arbuscular mycorrhizal fungus, Gigaspora margarita, New Phytologist, 154(3), pp.761–768. https://doi.org/10.1046/j.1469-8137.2002.00425.x.
- Versaw, W.K. and Garcia L.R., 2017. Intracellular transport and compartmentation of phosphate in plants. Current Opinion Plant Biology, 39, pp.25–30. https://doi.org/10.1016/j.pbi.2017.04.015.
- Vitor Roch., G., Maharajan, T., Ceasar, S.A. and Ignacimuthu, S., 2019. The Role of PHT1 Family Transporters in the Acquisition and Redistribution of Phosphorus in Plants. Critical Reviews in Plant Sciences, 38(3), pp.171-198. https://doi.org/10.1080/07352689.2019.1645402.
- Volpe, V., Giovannetti, M., Sun, X.G., Fiorilli, V. and Bonfante, P., 2016. The phosphate transporters LjPT4 and MtPT4 mediate early root responses to phosphate status in nonmycorrhizal roots. Plant, Cell Environment, 39, pp.660–671, https://doi.10.1111/pce.12659.
- Wahab, , Muhammad, M., Munir, A., Abdi, G., Zaman, W., Ayaz, A., Khizar, C. and Papula Reddy, S.P., 2023. Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants (Basel), 12(17), pp.3102. https://doi.10.3390/plants12173102.
- Walder, F., Brulé, D., Koegel, S., Wiemken, A., Boller, T. and Courty, P.E., 2015. Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax, New Phytologist, 205(4), pp.1632–1645. https://doi.10.1111/nph.13292.
- Wang, C., Huang, W., Ying, Y., Li, S., Secco, D., Tyerman, S., Whelan, J. and Shou, H.X., 2012. Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves. New Phytologist, 196(1), pp.139-148, https://doi.10.1111/j.1469-8137.2012.04227. x.
- Wang, X., Wang, Y., Pineros, M.A., Wang, Z., Wang, W., Li, C., Wu, Z., Kochian, L.V. and Wu, P., 2014. Phosphate transporters OsPHT1; 9 and OsPHT1; 10 are involved in phosphate uptake in rice. Plant, Cell and Environment 37(5), pp.1159–1170, 10.1111/pce.12224.
- Weng, W., Yan, J., Zhou, M., Yao, X. Gao, A., Ma, C., Cheng, J. and Ruan, J., 2022. Roles of arbuscular mycorrhizal fungi as a biocontrol agent in the control of plant diseases. Microorganisms,10(7), pp.1266, https://doi.3390/microorganisms10071266.
- Xu, F., Liu, Q., Chen, L., Kuang, J., Walk, T., Wang, J. and Liao, H., 2013. Genome-wide identification of soybean microRNAs and their targets reveals their organ-specificity and responses to phosphate starvation. BMC Genomics,14, pp.66 https://doi.10.1186/1471-2164-14-66.
- Xu, , Chen, Z., Li, X., Tan, J., Liu, F. and Wu, J. 2023. The mechanism of promoting rhizosphere nutrient turnover for arbuscular mycorrhizal fungi attributes to recruited functional bacterial assembly. Molecular Ecology, 32(9), pp.2335-2350, https://doi.org/10.1111/mec.16880.
- Yamaji, N., Takemoto, Y., Miyaji, T., Mitani-Ueno, N., Yoshida, K.T. and Jian Feng Ma, J., 2017. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node. Nature, 541(7635), pp.92-95. https://doi.10.1038/nature20610.
- Yang, S.Y., Lin, W.Y., Hsiao, Y.M. and Chiou, T.J., 2024. Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus. The Plant cell, 36(5), pp.1504–1523, https://doi.org/10.1093/plcell/koad326.
- Yao, Q., Li, Feng, G. and Christie, P., 2001. Influence of extraradical hyphae on mycorrhizal dependency of wheat genotypes, Communication in Soil Science and Plant Analysis, 32, pp.3307–3317, https://doi.1081/CSS-120001122.
- Zhang, L, Shi, N., Fan, J., Wang, F., George, T.S. and Feng, G., 2018. Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions. Environmental Microbiology, 20 (7), 2639-2651, https://doi.org/10.1111/1462-2920.14289.
|