Evaluation of the Efficacy of Humoral Immunity Response of Killed Oil Adjuvant *Escherichia coli* Vaccine in Layer Chicken against Avian *E. coli* Serotype O₇₈ Infection

Abstract

١

۲

٣

٤ 0 ٦

٧

٨ Colibacillosis is one of the most important bacterial diseases of chickens and turkeys which caused by avian pathogenic Escherichia coli (APEC). Mortality, low body weight, and high FCR in ٩ colibacillosis affected poultry farms and higher carcass condemnation at slaughterhouse caused ۱. 11 great economic impacts on the poultry industry. In recent years, production of homologous and heterologous APEC vaccines has been evaluated. In this study, mineral oil as an adjuvant for ۱۲ ۱۳ inactivated *E. coli* used and inoculated via injection route to layer chicken. At 28 days of age, 60 ١٤ birds were subsequently divided into six experimental groups of 10 chickens per group. Chickens in control group did not receive E. coli vaccines; whereas five treatment groups were vaccinated 10 subcutaneously with a formalin inactivated, mineral-oil adjuvant E. coli vaccine containing isolate ١٦ ۱۷ of E. coli serotype O₇₈; T₁, T₂, T₃, T₄, and T₅ groups were vaccinated at 28 days of age with 0.2 ml $(8 \times 10^6, 16 \times 10^6, 33 \times 10^6, 66 \times 10^6, and 133 \times 10^6 \text{ cfu/ml})$ per dose of *E. coli* O₇₈ respectively. IgG ۱۸ ۱٩ antibody titers against E. coli was evaluated 10 weeks after inoculation with ELISA method. ۲. Results showed a significant rise in IgG antibodies titer in the immunized birds compared to the ۲١ unimmunized control group (P < 0.05), anti IgG antibodies increased weekly after injection in most ۲۲ vaccinated groups up to four weeks. Overall, prepared E. coli vaccine in Razi institute, Shiraz ۲٣ branch induced high levels of immune responses in the vaccinated group as revealed by ELISA. ۲٤ Although, in order to make considerable immunological stimulus it is suggested that all the ۲0 chickens in the experimental group receive a booster dose four weeks after the first immunization. 22 Keywords: APEC, Colibacillosis, Immunization, Vaccine ۲۷

- ۲۹ **1. Introduction**
- ۳.

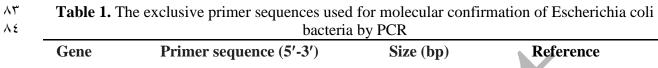
Colibacillosis is caused by infection with a strain of *Escherichia coli* (1); *Escherichia coli* is a gram-negative rod-shaped bacteria. It is normally found in the intestine of poultry and other vertebrates. Though many *E coli* are not pathogenic, some have acquired virulence factors, greatly increasing their capacity to cause disease (2). Colibacillosis results in a localized or systemic infection caused by avian pathogenic *Escherichia coli* (APEC) (3).

٣٦ Syndromes associated with colibacillosis can vary and include acute fatal septicemia, airsacculitis, ۳۷ pericarditis, perihepatitis, peritonitis, and lymphocytic depletion of the bursa and thymus (4); ۳۸ salpingitis and cellulitis (5), in laying hens, peritonitis and salpingitis are common, whereas disease ۳٩ in young chicks may include omphalitis (yolk sac infection) or swollen head syndrome (4). ٤. Previously, most APEC isolates were assigned to three main serogroups: O₁, O₂, and O₇₈; however, ٤١ it has been shown that there is a great diversity in serogroups of APEC causing colibacillosis (6). ٤٢ Colibacillosis is one of the most commonly occurring and economically devastating bacterial ٤٣ diseases of poultry worldwide (7) resulting in multimillion dollar losses annually that affect many ٤٤ facets of poultry production. Control of colibacillosis is problematic due to widespread 20 antimicrobial resistance among APEC isolates (8), restrictions on use of antimicrobial agents in ٤٦ poultry, and the lack of vaccines to provide protection against all types of APEC isolates causing ٤٧ colibacillosis. There are reports on Escherichia coli autogenous vaccines which mostly used in ٤A breeder flocks; however, evidences on the efficacy of such vaccines in terms of rising E. coli ٤٩ infections is rare. Therefore, the aim of the current study was to evaluate the efficacy of humoral ٥. immunity response in layer chicken vaccinated with *Escherichia coli* vaccine which developed in 01 Shiraz, Razi Institute.

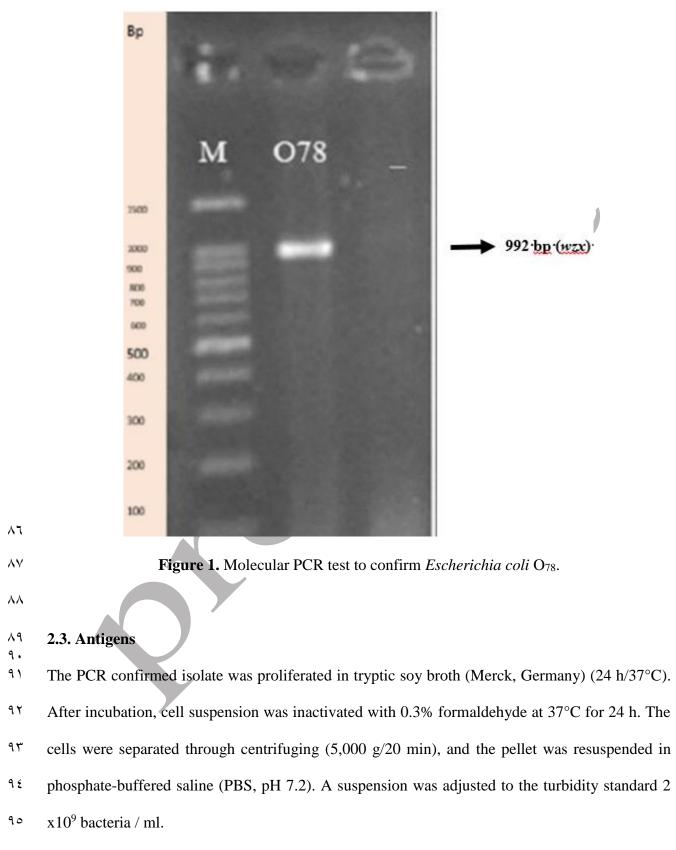
- ٥٣

- $\circ \epsilon$ 2.1. Animals
- 00

In total, sixty unvaccinated layer chickens (Hy-line) of mixed sex were obtained on the day of
 hatching from a commercial hatchery of the Razi Vaccine and Serum Research Institute (Shiraz
 branch). These birds were kept in controlled area with free access to food and water at the poultry
 department of the Razi Vaccine and Serum Research Institute (Shiraz branch).


- ٦.
- ז *ו* ז ז

2.2. Isolation, identification, and serotyping


٦٣ Poultry pathogenic *Escherichia coli* serotype O₇₈ was obtained from the microbiology department ٦٤ of the Razi Vaccine and Serum Research Institute (Shiraz branch), this bacterium selected for this 70 study was isolated in the laboratory from the hearts and livers of 4–8-day-old broiler chickens ٦٦ suffering from colibacillosis infection with perihepatitis and pericarditis. For isolation of E. coli, ٦٧ tryptic soy broth (Merck, Germany), MacConkey agar (MCA) and Eosin-methylene blue (EMB) ٦٨ agar were used as enrichment, differential and selective medium respectively. The enrichment, the ٦٩ MCA, and EMB agar were incubated at 37°C for 24 hr. The smooth, moist colonies having metallic ٧. sheen on EMB agar were randomly sub-cultured. The isolates were identified on the basis of their ٧١ cultural, morphological and biochemical characteristics (9).

۲۷ Identification of *Escherichia coli* O₇₈ was done by polymerase chain reaction (PCR) in ۷٣ experimentally infected specimens (10). The PCR amplifications were conducted in a 25 µL ٧٤ reaction volume containing 12.5 µL of Master Mix 2X AMPLIOON (Denmark), 1.5 U Tag ٧0 polymerase, 1.5 Mm MgCl₂, 1 µL of each primer, PCR buffer, and RNase-free water. To confirm ٧٦ *Escherichia coli* strain O₇₈ from PCR test using forward and reverse primers OG₇₈ related to wzx ٧٧ gene was used based on the presence of 992 bp fragment (Table 1; Figure 1). Polymerase chain ٧٨ reaction was done in an Eppendorf thermocycler (Germany) during 30 cycles with denaturing ٧٩ temperature of 94°C for one minute, annealing temperature of 55°C for 40 seconds, and an

- A. extension temperature of 72°C for 1 minute was done. The polymerase chain reaction product was
- A) electrophoresed on a 1% agarose gel (Figure 1).
- ۸۲

		• • • •		
		Forward:	002	
	WZX	GGTATGGGTTTGGTGGTA	992	
		Reverse:		Liu B. et al. Vet
		AGAATCACAACTCTCGGCA		Microbiol.2010
٨٥				

2.4. Adjuvants and Vaccines

٩٨ To produce the oil adjuvanted vaccines, standard W/O emulsions, including MontanideTM ISA ٩٩ 70, shacked softly on the mixer at room temperature, and the aqueous phase was combined at a 1 . . 70:30 ratio (w/w, adjuvant:antigen or PBS) as suggested by the adjuvant manufacturer (Seppic, 1.1 France). 1.1 1.7 2.5. Immunization of Chickens 1.5 1.0 1.7 60 chickens were randomly allotted to six treatment groups (ten birds each), (control, T_1 , T_2 , T_3 , T₄, and T₅). Birds in the control group did not receive *E. coli* vaccines; T₁, T₂, T₃, T₄, and T₅ groups ۱.۷ were vaccinated at 28 days of age with 0.2 ml (8 x10⁶, 16 x10⁶, 33 x10⁶, 66 x10⁶, and 133 x10⁶ ۱.۸ 1.9 cfu/ml per dose of E. coli O₇₈ respectively) formalin inactivated, mineral-oil adjuvanted vaccine 11. subcutaneously containing one isolate of *E. coli* (serotype O₇₈). 111 2.6. Serum Titer of Anti- E. coli O₇₈Antibody 117 Blood samples were randomly collected from brachial vein of 60 chickens prior to immunization, 117 and then from 10 chickens/group/weekly up to 10 weeks after immunization. The sera were 112 separated through centrifuging (3500 g/10 min), followed by storing at -20°C until analysis of the 110 antibody responses against E. coli O₇₈ using an indirect enzyme-linked immunosorbent assay 117 (ELISA). 111 2.7. Serology 114 119 The antigen response following challenge with E. coli O78, was defined by Enzyme-Linked 17. Immunosorbent Assay (ELISA). As mentioned before, the samples were centrifuged at $3500 \times g$

for 10 minutes. The serum fraction was delivered to separate tubes and kept at -20 °C until they

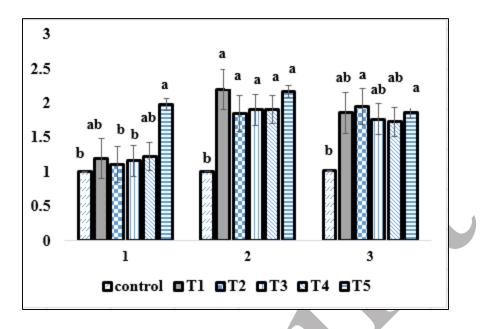
were followed for ELISA evaluation of antibody content. For ELISA, the 96-well plates were

coated overnight at 4 °C with 0.5 μg whole cell sonicates of *E. coli* O₇₈. Carbonate-bicarbonate

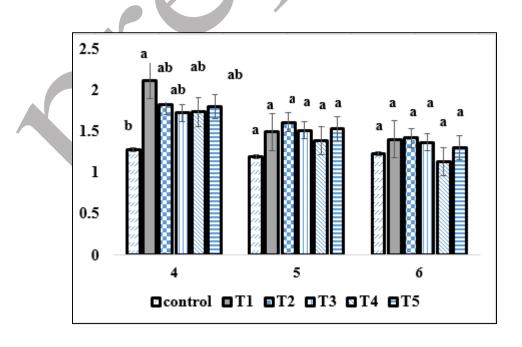
172	buffer (pH 9.6) was used for diluting sonicates. Each well was then washed; this and all subsequent
170	washing steps consisted of one wash in 300 μ L washing buffer (PBS + 0.05% Tween 20). After
١٢٦	that, 200 μ L bovine serum albumin (BSA) added as blocking solution for 2 h at room temperature
177	and then washed. 100 μ L of serum samples were added to each well, after incubation and washing,
١٢٨	$100 \ \mu L$ polyclonal goat anti-chicken IgG diluted 1:4000 in diluting buffer, were added to each well
129	and the plates incubated for 1 h at 37 °C and then washed. To find the binding, 100 μ L of 3,3',5,5'-
۱۳.	tetramethylbenzidine (TMB) substrate was added to each well and incubated for 15 minutes and
١٣١	then the reaction was stopped by addition of 100 μ L 1 M H ₂ SO ₄ . The optical density was read at
۱۳۲	450 nm, using a spectrophotometer (BioTek Instruments).
١٣٣	
172	3. Results
	3. Results Results of serological tests are shown in table 2. Data showed the significant titer in IgG antibodies
182 180	
182 180 187	Results of serological tests are shown in table 2. Data showed the significant titer in IgG antibodies
172 170 177 177	Results of serological tests are shown in table 2. Data showed the significant titer in IgG antibodies in the immunized birds compared to the unimmunized control group ($P < 0.05$; Figure 2), <i>E. coli</i>
182 180 187 187 188	Results of serological tests are shown in table 2. Data showed the significant titer in IgG antibodies in the immunized birds compared to the unimmunized control group ($P < 0.05$; Figure 2), <i>E. coli</i> vaccine which developed in Shiraz, Razi Institute raised higher IgG titers in most of the weeks
182 180 187 187 188 188	Results of serological tests are shown in table 2. Data showed the significant titer in IgG antibodies in the immunized birds compared to the unimmunized control group ($P < 0.05$; Figure 2), <i>E. coli</i> vaccine which developed in Shiraz, Razi Institute raised higher IgG titers in most of the weeks (Figures 3 and 4). No differences in antibody titers against <i>Escherichia coli</i> between experimental
182 180 187 187 188 188 189 120	Results of serological tests are shown in table 2. Data showed the significant titer in IgG antibodies in the immunized birds compared to the unimmunized control group ($P < 0.05$; Figure 2), <i>E. coli</i> vaccine which developed in Shiraz, Razi Institute raised higher IgG titers in most of the weeks (Figures 3 and 4). No differences in antibody titers against <i>Escherichia coli</i> between experimental and control groups were found at wk 5 to 10 (Figures 4 and 5). Mean titre of OD of sera of
172 170 177 177 178 178 179 120	Results of serological tests are shown in table 2. Data showed the significant titer in IgG antibodies in the immunized birds compared to the unimmunized control group ($P < 0.05$; Figure 2), <i>E. coli</i> vaccine which developed in Shiraz, Razi Institute raised higher IgG titers in most of the weeks (Figures 3 and 4). No differences in antibody titers against <i>Escherichia coli</i> between experimental and control groups were found at wk 5 to 10 (Figures 4 and 5). Mean titre of OD of sera of vaccinated groups was generally higher than their control counterparts (Figure 2); however, there

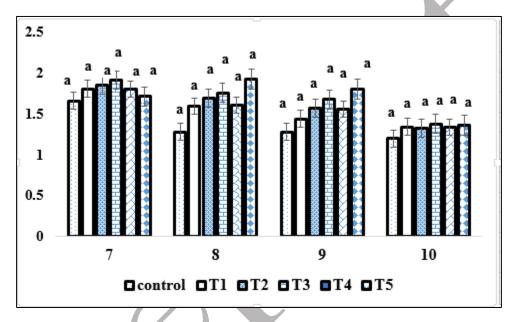
2. LS mean±SE of antibody titer against *Escherichia coli* (SP%) obtained in Hyline selected laying chickens at different weeks post-immunization

Tr	Treatr	nent					I	P-valu	e
ait	Control	T_1	T_2	T_3	T_4	T_5	Treat	Ti	Treat
S							ment	me	ment
									×
									time


	$1.5800\pm$					<.00	<.0	0.029
±0.043°	0.046 ^b	0.043 ^b	0.044 ^b	0.043 ^b	$\pm 0.045^{a}$	01	001	3

- $1 \leq V$ T₁, T₂, T₃, T₄, and T₅ groups were vaccinated at 28 days of age with 0.2 ml (8 x10⁶, 16 x10⁶, 33
- 15Λ x10⁶, 66 x10⁶, and 133 x10⁶ cfu/ml) per dose of *E. coli* O₇₈ respectively.
- Means with different letters differ significantly ($P \le 0.05$).


10.


NotFigure 2. Mean titre of OD of sera of laying chickens following vaccination with *Escherichia*Notcoli O78 which produced in Shiraz, Razi Institute. T1, T2, T3, T4, and T5 groups were vaccinated atNot28 days of age with 0.2 ml (8 x10⁶, 16 x10⁶, 33 x10⁶, 66 x10⁶, and 133 x10⁶ cfu/ml) per dose ofNotE. coli O78 respectively. Means with different letters differ significantly ($P \le 0.05$).Not

NoAFigure 3. Effect of treat × time (wk) interaction on antibody titers against *E. Coli* (SP%) inNoAHyline selected laying chickens at different weeks post-immunization. T_1, T_2, T_3, T_4 , and T_5 groupsNoAwere vaccinated at 28 days of age with 0.2 ml (8 x10⁶, 16 x10⁶, 33 x10⁶, 66 x10⁶, and 133 x10⁶NoAcfu/ml) per dose of *E. coli* O₇₈ respectively. ^{a,b}Within each week, least squares means withNoAdifferent letters differ significantly ($P \le 0.05$).

Figure 4. Effect of treat × time (wk) interaction on antibody titers against *E. Coli* (SP%) in**Hyline selected laying chickens at different weeks post-immunization.** T_1, T_2, T_3, T_4 , and T_5 groups**Were vaccinated at 28 days of age with 0.2 ml (8 x10⁶, 16 x10⁶, 33 x10⁶, 66 x10⁶, and 133 x10⁶Chu/ml) per dose of** *E. coli* O₇₈ respectively. ^{a,b}Within each week, least squares means with**Chu/ml) per dose of** *E. coli* O₇₈ respectively. ^{a,b}Within each week least squares means with

۱۷.

Figure 5. Effect of treat × time (wk) interaction on antibody titers against *E. Coli* (SP%) in**WY**Hyline selected laying chickens at different weeks post-immunization. T_1, T_2, T_3, T_4 and T_5 groups**WY**were vaccinated at 28 days of age with 0.2 ml (8 x10⁶, 16 x10⁶, 33 x10⁶, 66 x10⁶, and 133 x10⁶**WY**cfu/ml) per dose of *E. coli* O₇₈ respectively. No differences were found at wk 7, 8, 9, and 10.

140

177 4. Discussion

As before mentioned, colibacillosis is an economically important for the avian industry, which causes multimillion-dollar losses annually (11). Preparing effectual colibacillosis control measures highly favorable. Colibacillosis control mostly concentrates on management methods made biosecurity plan for reduce preparing conditions among production birds, such as mycoplasma or

١٨١	viral infections (11). Although, management methods that have reduced colibacillosis in the past
١٨٢	may not be as efficient in the future. Moreover, use of antimicrobial factors in animal production
١٨٣	is being given close investigation at this time with restriction being placed on the use of certain
١٨٤	therapeutic factors in avian production (12). Finally, control of avian colibacillosis using vaccines
170	in specified conditions may demonstrate favorable. Up to the present time, vaccines formulated to
١٨٦	impede avian colibacillosis have been faced with mixed results. Vaccines against APEC of
١٨٧	different serogroups have been generated. Killed bacterial vaccines, including autogenous
١٨٨	vaccines, sub-unit vaccines, and live-attenuated vaccines are in use for prevention of APEC (13,
١٨٩	14, and 15). A great number of these vaccines have only been effective against homologous
19.	challenge. The present report is to address the efficacy of humoral immunity response of killed oil
۱۹۱	adjuvant Escherichia coli vaccine in layer chicken against avian E. coli infection. The titer in IgG
198	antibodies in the experimental groups were higher compared to the control group. Increased titer
, , ,	antibodies in the experimental groups were inglier compared to the control group. Increased itter
١٩٣	in IgG antibodies was more pronounced in T_5 birds which receiving the highest number of bacteria
۱۹۳	in IgG antibodies was more pronounced in T_5 birds which receiving the highest number of bacteria
१९٣ १९१	in IgG antibodies was more pronounced in T_5 birds which receiving the highest number of bacteria per mL. Śmiałek et al. (16) showed that the use of live, attenuated, aroA gene-deleted vaccine
198 192 190	in IgG antibodies was more pronounced in T_5 birds which receiving the highest number of bacteria per mL. Śmiałek et al. (16) showed that the use of live, attenuated, aroA gene-deleted vaccine against colibacillosis cause a reduction in the amount of <i>E. coli</i> in the population of avian. These
१९٣ १९६ १९० १९२	in IgG antibodies was more pronounced in T_5 birds which receiving the highest number of bacteria per mL. Śmiałek et al. (16) showed that the use of live, attenuated, aroA gene-deleted vaccine against colibacillosis cause a reduction in the amount of <i>E. coli</i> in the population of avian. These results are in agreement with findings of El-Mawgoud et al. (17), who showed that live <i>E. coli</i>
۱۹۳ ۱۹٤ ۱۹٥ ۱۹٦	in IgG antibodies was more pronounced in T_5 birds which receiving the highest number of bacteria per mL. Śmiałek et al. (16) showed that the use of live, attenuated, aroA gene-deleted vaccine against colibacillosis cause a reduction in the amount of <i>E. coli</i> in the population of avian. These results are in agreement with findings of El-Mawgoud et al. (17), who showed that live <i>E. coli</i> spray vaccination of broiler chickens decreased the APEC colonization in the liver and heart of the
۱۹۳ ۱۹٤ ۱۹٥ ۱۹٦ ۱۹۷	in IgG antibodies was more pronounced in T ₅ birds which receiving the highest number of bacteria per mL. Śmiałek et al. (16) showed that the use of live, attenuated, aroA gene-deleted vaccine against colibacillosis cause a reduction in the amount of <i>E. coli</i> in the population of avian. These results are in agreement with findings of El-Mawgoud et al. (17), who showed that live <i>E. coli</i> spray vaccination of broiler chickens decreased the APEC colonization in the liver and heart of the birds after <i>E. coli</i> infection. Also Roland et al. (18) reported the use of live, attenuated, <i>E. coli</i>
۱۹۳ ۱۹٤ ۱۹٥ ۱۹٦ ۱۹۷ ۱۹۸	in IgG antibodies was more pronounced in T_5 birds which receiving the highest number of bacteria per mL. Śmiałek et al. (16) showed that the use of live, attenuated, aroA gene-deleted vaccine against colibacillosis cause a reduction in the amount of <i>E. coli</i> in the population of avian. These results are in agreement with findings of El-Mawgoud et al. (17), who showed that live <i>E. coli</i> spray vaccination of broiler chickens decreased the APEC colonization in the liver and heart of the birds after <i>E. coli</i> infection. Also Roland et al. (18) reported the use of live, attenuated, <i>E. coli</i> vaccine derived O ₇₈ LPS, protected the white leghorn chicks against avian pathogenic <i>E coli</i> O ₇₈
۱۹۳ ۱۹٤ ۱۹٥ ۱۹٦ ۱۹۷ ۱۹۸ ۱۹۹	in IgG antibodies was more pronounced in T_5 birds which receiving the highest number of bacteria per mL. Śmiałek et al. (16) showed that the use of live, attenuated, aroA gene-deleted vaccine against colibacillosis cause a reduction in the amount of <i>E. coli</i> in the population of avian. These results are in agreement with findings of El-Mawgoud et al. (17), who showed that live <i>E. coli</i> spray vaccination of broiler chickens decreased the APEC colonization in the liver and heart of the birds after <i>E. coli</i> infection. Also Roland et al. (18) reported the use of live, attenuated, <i>E. coli</i> vaccine derived O ₇₈ LPS, protected the white leghorn chicks against avian pathogenic <i>E coli</i> O ₇₈ strain. In the present study killed <i>Escherichia coli</i> vaccine was used, because the production

۲ • ٤	of the serotype(s) of E. coli, which are included in the substantial outbreaks. Unfortunately,
۲.0	vaccination with killed vaccines may stress the birds, and the adjuvants may induce local reactions
۲.٦	(20). Sub-unit vaccines may provide an extensive protection against more serotypes of APEC.
۲.۷	However, the disadvantage of stress to birds during vaccination, and side effects of adjuvants have
۲۰۸	also been recorded for the sub-unit vaccine (20). Vaccination of broiler parents by the inactivated
۲.٩	subunit Nobilis® E. coli was found to reduce the number of sequence types of E. coli isolated from
۲۱.	diseased broiler parents in the vaccinated flock compared to the control group, which shows a
711	potential for sub-unit vaccine to make less the outbreak of specific clones of APEC (21). The live
717	Poulvac® E. coli vaccine includes an aroA mutant of a strain of serotype O78:K80 and ST23, but
212	protection is not limited to this specific serotype and sequence type (22). Recent experimental
212	studies have combined vaccination with live attenuated E. coli vaccine with autogenous vaccines
710	and it seems possible to take a synergy of protection (23). The investigation of Kariyawasam et al.
517	(24) revealed that collected IgY from eggs took from hens under different vaccination programs
717	could cause passive maternal protection of day-old chicks when E. coli was used for challenge
117	compared to the control groups, documenting that vaccination of parents may transfer the
219	immunity to the chicks, under experimental conditions. Based on the results of this study the
۲۲.	application of killed oil adjuvant Escherichia coli vaccine which produced in Shiraz, Razi Institute
177	had greater efficacy in rising IgG titers in layer hens in comparison with unvaccinated group;
* * *	however, to evoke immunological response, the second immunization is suggested four weeks
222	after the first immunization.
225	
770 777	Acknowledgment
777 777	The authors wish to express their appreciation to the Razi Vaccine and Serum Research Institute, Shiraz Branch

- ۲۲۸ Shiraz Branch. 229
- ۲۳. **Authors' Contribution**

222	Study concept and design: A.S; M.H.H; F.S
۲۳۳	Acquisition of data: F.S; R.R; F.D; M.H; S.A; A.R
272	Analysis and interpretation of data: F.S; M.H
220	Drafting of the manuscript: F.S
۲۳٦	Critical revision of the manuscript for important intellectual content: A.S; M.H; F.S
777 777 779	Ethical Approval
7 E • 7 E 1 7 E 7	All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.
728 722	Conflict of Interest
720	The authors declare that they have no conflict of interest.
7 E 7 7 E V	Funding
7 2 1	This project was supported partially by Razi Vaccine and Serum Research Institute, Shiraz
7 2 9	Branch.
70.	Data Availability
101	The data that support the findings of this study are available on request from the corresponding
707	author.
708 702	References
700	1. Rawiwet V, Chansiripornchai N. The efficacy of Escherichia coli aroA-live vaccine in broilers
202	against avian E. coli serotype O78 infection. The Thai Journal of Veterinary Medicine.
707	2009; 39(4):337-42.
101	2. Ghunaim H, Abu-Madi MA, Kariyawasam S. Advances in vaccination against avian
709	pathogenic Escherichia coli respiratory disease: potentials and limitations. Veterinary
۲٦.	microbiology. 2014 Aug 6; 172(1-2):13-22.

771	3. Lozica L, Morteza Gholi CS, Kela A, Lošić I, Horvatek Tomić D, Gottstein Ž. Autogenous
222	Escherichia coli vaccine application as an innovative antimicrobial therapy in poultry
222	farming—A case report. Vaccines. 2022 Sep 19; 10(9):1567.
225	4. Alber A, Stevens MP, Vervelde L. The bird's immune response to avian pathogenic
220	Escherichia coli. Avian Pathology. 2021 Sep 3;50(5):382-91.
777	5. Li L, Thøfner I, Christensen JP, Ronco T, Pedersen K, Olsen RH. Evaluation of the efficacy of
777	an autogenous Escherichia coli vaccine in broiler breeders. Avian Pathology. 2017 May
227	4; 46(3):300-8.
229	6. Ali A, I Abd El-Mawgoud A, M Dahshan AH, A EL-Sawah A, A Nasef S. Escherichia coli in
۲۷.	broiler chickens in Egypt, its virulence traits and vaccination as an intervention strategy.
211	Novel Research in Microbiology Journal. 2019 Aug 1; 3(4):415-27.
777	7. Filho TF, Fávaro Jr C, Ingberman M, Beirão BC, Inoue A, Gomes L, Caron LF. Effect of
212	spray Escherichia coli vaccine on the immunity of poultry. Avian Diseases. 2013 Sep 1;
۲۷٤	57(3):671-6.
200	8. Gyles CL. Antimicrobial resistance in selected bacteria from poultry. Animal health research
277	reviews. 2008 Dec;9 (2):149-58.
777	9. Cowan ST. Cowan and Steel's manual for the identification of medical bacteria.1974.
277	10. DebRoy C, Roberts E, Fratamico PM. Detection of O antigens in Escherichia coli. Animal
219	health research reviews. 2011 Dec;12(2):169-85.
۲۸.	11. Barnes HJ. Colibacillosis. Diseases of poultry. 2003:631-52.
117	12. Lynne AM, Foley SL, Nolan LK. Immune response to recombinant Escherichia coli Iss
787	protein in poultry. Avian Diseases. 2006 Jun 1;50(2):273-6.

272	13. Bolin CA, Jensen AE. Passive immunization with antibodies against iron-regulated outer
272	membrane proteins protects turkeys from Escherichia coli septicemia. Infection and
270	immunity. 1987 May; 55(5):1239-42.
777	14. Roland K, Karaca K, Sizemore D. Expression of Escherichia coli antigens in Salmonella
777	typhimurium as a vaccine to prevent airsacculitis in chickens. Avian diseases. 2004 Sep
7 / /	1; 48(3):595-605.
۲۸۹	15. Kariyawasam S, Wilkie BN, Hunter DB, Gyles CL. Systemic and mucosal antibody
۲٩.	responses to selected cell surface antigens of avian pathogenic Escherichia coli in
291	experimentally infected chickens. Avian Diseases. 2002 Jul 1; 46(3):668-78.
292	16. Śmiałek M, Kowalczyk J, Koncicki A. Influence of vaccination of broiler chickens against
793	Escherichia coli with live attenuated vaccine on general properties of E. coli population,
79£	IBV vaccination efficiency, and production parameters-A field experiment. Poultry
790	science. 2020 Nov 1; 99(11):5452-60.
297	17. Abd El-Mawgoud AI, El-Nahass ES, Shany SA, El-Sawah AA, Dahshan AH, Nasef SA, Ali
7 9 V	A. Efficacy of live attenuated vaccine and commercially available lectin against avian
297	pathogenic E. coli infection in broiler chickens. Veterinary Sciences. 2020 May
299	13;7(2):65.
۳	18. Roland K, Curtiss III R, Sizemore D. Construction and evaluation of a Δ cya Δ crp Salmonella
۳.۱	typhimurium strain expressing avian pathogenic Escherichia coli O78 LPS as a vaccine to
۳.۲	prevent airsacculitis in chickens. Avian diseases. 1999 Jul 1:429-41.
۳.۳	19- Landman WJ, Van Eck JH. The efficacy of inactivated Escherichia coli autogenous vaccines
۳ • ٤	against the E. coli peritonitis syndrome in layers. Avian Pathology. 2017 Nov
۳.0	2;46(6):658-65.

т.ч т.v т.л	 20- Christensen H, Bachmeier J, Bisgaard M. New strategies to prevent and control avian pathogenic Escherichia coli (APEC). Avian Pathology. 2021 Sep 3;50(5):370-81. 21- Gregersen RH, Christensen H, Ewers C, Bisgaard M. Impact of Escherichia coli vaccine on
۳.٩	parent stock mortality, first week mortality of broilers and population diversity of E. coli
۳۱.	in vaccinated flocks. Avian Pathology. 2010 Aug 1;39(4):287-95.
۳۱۱	22- La Ragione RM, Woodward MJ, Kumar M, Rodenberg J, Fan H, Wales AD, Karaca K.
۳۱۲	Efficacy of a live attenuated Escherichia coli O78: K80 vaccine in chickens and turkeys.
۳۱۳	Avian diseases. 2013 Jun 1;57(2):273-9.
315	23- Koutsianos D, Gantelet H, Franzo G, Lecoupeur M, Thibault E, Cecchinato M, Koutoulis
510	KC. An assessment of the level of protection against colibacillosis conferred by several
۳۱٦	autogenous and/or commercial vaccination programs in conventional pullets upon
۳۱۷	experimental challenge. Veterinary Sciences. 2020 Jun 30;7(3):80.
۳۱۸	24- Kariyawasam S, Wilkie BN, Gyles CL. Resistance of broiler chickens to Escherichia coli
۳۱۹	respiratory tract infection induced by passively transferred egg-yolk antibodies.
۳۲.	Veterinary microbiology. 2004 Mar 5;98(3-4):273-84.
۳۲۱	