1استادیار بخش تحقیقات غلات، موسسه تحقیقات کشاورزی دیم کشور، ایران
2مرکز تحقیقات زنجان
3عضو هیئت علمی مرکز تحقیقات و اموزش کشاورزی و منابع طبیعی خراسان شمالی
4استادیار بخش تحقیقات غلات، معاونت موسسه تحقیقات کشاورزی دیم کشور، سرارود ، کرمانشاه، ایران
5گروه زراعت و اصلاح نباتات، دانشکده کشاورزی دانشگاه بوعلی سینا
6مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کردستان بخش تحقیقات علوم زراعی و باغی
7بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات آموزش کشاورزی و منابع طبیعی استان اردبیل، سازمان تحقیقات، آموزش و ترویج کشاورزی، اردبیل،
8بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات آموزش کشاورزی و منابع طبیعی استان آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی،
چکیده
جهت تجزیه اثرمتقابل ژنوتیپ × محیط در ژنوتیپهای جو با استفاده از روشهای چند متغیره بهمنظور ارزیابی ژنوتیپها، محیطها و روابط بین آنها این تحقیق با 12 ژنوتیپ امیدبخش جو، به همراه ۳ رقم شاهد در شرایط دیم و در قالب طرح بلوکهای کامل تصادفی با چهار تکرار در ایستگاههای تحقیقاتی واقع در مناطق سردسیر و معتدل سرد کشور به مدت سه سال (1397 تا 1400) انجام گرفت. جهت بررسی پایداری ژنوتیپها، از روشهایAMMI و GGE biplot استفاده شد تجزیه واریانس مرکب نشان داد که اثرات ساده و متقابل در سطح احتمال 1 درصد معنیدار بود. تجزیه AMMI نشان داد که ژنوتیپهای G14، G10 و G9 دارای اثرمتقابل پایینی بوده و با عملکردی نزدیک به میانگین میتوانند بهعنوان ژنوتیپهای با سازگاری عمومی معرفی شوند. در مقابل ژنوتیپهای G1، G2، G4 وG13 با دارا بودن بیشترین عملکرد بهعنوان ژنوتیپهایی با سازگاری خصوصی معرفی شدند. براساس شاخص انتخاب همزمان نیز ژنوتیپهای G1، G11، G2، G13 و G3 بهعنوان ژنوتیپهای پایدار با عملکرد بالا انتخاب شدند. براساس روش GGE biplot ژنوتیپ G9 دارای بیشترین پایداری عمومی بود و در مرحله بعد، ژنوتیپهای G11، G2، G4، G1 و G13 دارای بالاترین عملکرد با پایداری نسبتاً کمتر قرار داشتند. این روش نیز ژنوتیپهای G9، G2 و G11 بهعنوان ژنوتیپهای سازگار معرفی شدند. با توجه به نتایج دو تجزیه میتوان ژنوتیپ G9 را بهعنوان پایدارترین ژنوتیپ و ژنوتیپهای G1، G11، G2، G13 و G3 را بهعنوان ژنوتیپهای با سازگاری و عملکرد بالا معرفی کرد.
Investigating the Yield Stability and Adaptability of Promising Rainfed Genotypes in the Cold Climate of the Country
نویسندگان [English]
Farhad Ahak paz1؛ Ali Akbar Asadi2؛ Elyas Neyestani3؛ Abdolvahab Abdulahi4؛ human Mohammadi5؛ Mhamad Sharif Khaledian6؛ Saber Seifamiri7؛ Gholamreza Khalilzadeh8
1Assistant Professor Maragheh Rainfed Agricultural Research Institute, Iran
2Agricultural and Natural Resources Research Center
3Faculty member of the Agriculture Research Center of North Khorasan
4Assistant Professor of Cereal Research Department, Rainfed Agricultural Research Institute, Sararoud, Kermanshah, Iran
5Department of Agronomy and Plant Breeding, Faculty of Agricalture, Bu- Ali Sina University, Hamedan.
6Kurdistan Agricultural and Natural Resources Research and Education Center
7Crop and Horticultural Science Research department, Ardabil Agricultural and Natural Resources Research and Education Center, AREEO, Ardabil, Iran
8Assistant of Professor, Crop and Horticultural Science Research department, West Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Urmia, Iran.
چکیده [English]
Introduction: Rainfed barley is mainly cultivated in cold and cold temperate areas of Iran, and a large part of the barley cultivation area is facing the problem of lack of precipitation and lack of proper distribution. The cold is one of the main limiting factors in barley production in drylands of cold regions of the country, which prevents it from increasing its cultivation area. Considering that different cultivars show different reactions to environmental conditions, therefore, evaluation of cultivars' reactions in exposure to environmental changes is an important issue in selecting breeding cultivars. Genotype × environment interaction is the main reason for the differences in the adaptation of cultivars in different environments (Clevland, 2001). The various methods used to investigate the interaction can be traced back to AMMI and GGE biplot (Khamari et al., 2018). The AMMI analysis identifies genotypes and environments about each other and the studied environments by locating genotypes and environments on the biplot. In the GGE biplot method, the effects of genotype and genotype interaction × environment are graphically investigated; Also, genotypes can be evaluated based on yield in separate environments, all environments, stability and yield composition, and private and general adaptation. (Yan & Tinker, 2005). This study aimed to analyze the interaction of genotype × environment in barley genotypes using multivariate methods to evaluate genotypes, environments, relationships between genotypes and environments, and also to determine stable genotypes in terms of yield. Materials and Methods: In this study, 12 promising barley genotypes along with 3 cultivars of control Ansar, Abidar, and Sararud1 were studied in rainfed conditions in a randomized complete block design with four replications in dryland research stations in cold and temperate cold regions of Iran for three years (2018 to 1420). After determining grain yield composite analysis of variance was performed. AMMI and GGE biplot analysis were used to evaluate the stability of genotypes. After performing AMMI analysis, stability analysis parameters and simultaneous selection indices were calculated. Result and Discussion: Combined analysis of variance showed that simple and interaction effects were significant at a 1% probability level. This was the reason for the difference in environmental conditions in the stations and the years under test. The main environmental effect and genotype × interaction had the highest share of total squares observed in the experiments with 83.7% and 8.2%, respectively. AMMI analysis showed that genotypes G14, G10, and G9 had low interaction and with a near-average yield could be introduced as genotypes with general adaptation. In contrast, G1, G2, G4, and G13 genotypes with the highest yield were introduced as genotypes with private adaptation. Based on stability indices based on AMMI analysis and simultaneous selection index in a total of the calculated parameters, genotypes G1, G11, G2, G13, and G3 have the lowest total and can be selected as stable genotypes with high yield. Selection of control genotypes G1, G2, and G3 in this method shows the accuracy of the calculations and estimations. Based on the GGE biplot method, the G9 genotype had the highest general stability and in the next stage, G11, G2, G4, G1, and G13 had the highest yield with relatively low stability. This method introduced genotypes G9, G2, and G11 as compatible genotypes. These genotypes were introduced as desirable genotypes with high mean yield and high yield stability. In the next step, genotypes G1, G3, and G13 were included. According to the results of two analyses, genotype G9 can be introduced as the most stable genotype, and genotypes G1, G11, G2, G13, and G3 as genotypes with high adaptability and yield. Conclusion: Considering that a lot of time and money is spent on cultivar breeding, this process requires that the best method be used to analyze the stability and adaptation of cultivars to select the high-yield genotypes with the least interaction with the environment and if there is a specific adaptation, certain genotypes are introduced for specific regions. Therefore, due to the multiplicity of stability analysis methods, it is better to examine the results of experiments by several methods to be more confident about identifying and introducing superior genotypes and just doing one particular method does not seem reasonable.
کلیدواژهها [English]
AMMI Analysis, GGE biplot Analysis, Simultaneuos selection index