- ایوبی، ش.، تقی زاده، ر.، نمازی، ر.، ذوالفقاری، ع.، و روستایی صدرآبادی، ف. 1395. مقایسه روشهای K نزدیکترین همسایگی و شبکه عصبی مصنوعی برای پهنهبندی رقومی شوری خاک در منطقهی چاه افضل اردکان. نشریه علوم آب و خاک (علوم و فنون کشاورزی و منابع طبیعی). سال بیستم. شماره 76. صص. 71-59.
- تقیزاده مهرجردی، ر.، سرمدیان، م.، امید، م.، تومانیان، ن.، روستا، م.، و رحیمیان، م.، 1393. نقشه برداری رقومی کلاسهای خاک با استفاده از انواع روشهای دادهکاوی در منطقهی اردکان استان یزد. مجله مهندسی زراعی(مجله علمی کشاورزی)، جلد 37، شماره2. صص. 115-101.
- جعفری، ا.، خادمی، ح.، و ایوبی، ش. 1391. نقشهبرداری رقومی افقهای مشخصه و گروههای بزرگ خاک در منطقه زرند کرمان. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، شماره 62. صص. 177 تا 191.
- حریری، ع. 1374. نگرشی بر خاستگاه گروهی از سنگ های دگرگونه گستره قروه. پایان نامه کارشناسی ارشد، دانشگاه شهید بهشتی، تهران.
- حسینی، م. 1376. شرح نقشه زمینشناسی 1:100000 چهار گوش قروه (پیوست نقشه)، سازمان زمین شناسی و اکتشاف معدنی کشور.
- صالحی، م. ح.، و خادمی، ح. 1387. مبانی نقشهبرداری خاک. انتشارات جهاد دانشگاهی اصفهان. 210 صفحه.
- گیوی، ج. 1376. ارزیابی کیفی تناسب اراضی برای نباتات زراعی و باغی، مؤسسه تحقیقات خاک و آب. نشریه فنی شماره 1015، 100صفحه.
- Anguilli, F. 2005. Fast condensed nearest neighbor rule. Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany.
- Asfaw, E.; Suryabhagavan, K.; Argaw, M. Soil salinity modeling and mapping using remote sensing and GIS: The case ofWonji sugar cane irrigation farm, Ethiopia. Saudi Soc. Agric. Sci. 2018, 17, pp. 250–258.
- Barbouchi, M.; Abdelfattah, R.; Chokmani, K.; Aissa, N.B.; Lhissou, R.; El Harti, A. Soil salinity characterization using polarimetric InSAR coherence: Case studies in Tunisia and Morocco. IEEE J. Sel. Top. Earth Obs. Remote Sens. 2014, 8,pp. 3823–3832.
- Behrens, T. Forster, H. Scholten, T. Steninrucken, U. Spies, E. and Goldschmitt, M. 2005. Digital soil mapping using artificial neural networks. Journal of Plant Nutrition and Soil Science. 168: pp. 21-33.
- Bouksila, F.; Bahri, A.; Berndtsson, R.; Persson, M.; Rozema, J.; Van der Zee, S.E. Assessment of soil salinization risks under irrigation with brackish water in semiarid Tunisia. Exp. Bot. 2013, 92, pp.176–185.
- Breiman, L. 2001. "Random forests" Machine learning. 45, pp. 5-32.
- Brovelli, M.A.; Sun, Y.; Yordanov, V. 2020. Monitoring forest change in the amazon using multi-temporal remote sensing data and machine learning classification on Google Earth Engine. ISPRS Int. J. Geo-Inf., 9, 580.
- Camera, C. Z. Zomeni, J.S. Noller, A.M. Zissimos, I.C. Christoforou, B. and A. Bruggeman. 2017. A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization. Geoderma 285, pp.35-49
- Cañedo-Argüelles, M.; Kefford, B.J.; Piscart, C.; Prat, N.; Schäfer, R.B.; Schulz, C.-J. 2013. Salinisation of rivers: An urgent ecological issue. Pollut., 173, pp.157–167.
- Dehaan, R.; Taylor, G. Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization. Remote Sens. Environ. 2002, 80, pp. 406–417.
- Dent, D.; Young, A. Soil Survey and Land Evaluation; George Allen & Unwin: Sydney, NSW, Australia, 1981.
- Ding, J.-L.;Wu, M.-C.; Liu, H.-X.; Li, Z.-G. Study on the soil salinization monitoring based on synthetical hyperspectral index. Spectrosc. Anal. 2012, 32, pp. 1918–1922.
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore III, B. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, pp. 142–154.
- El Harti, A.; Lhissou, R.; Chokmani, K.; Ouzemou, J.-E.; Hassouna, M.; Bachaoui, E.M.; El Ghmari, A. Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices. J. Appl. Earth Obs. Geoinf. 2016, 50, pp. 64–73.
- Elshewy, M.A., Mohamed, M.H.A. & Refaat, M. 2024. Developing a Soil Salinity Model from Landsat 8 Satellite Bands Based on Advanced Machine Learning Algorithms. J Indian Soc Remote Sens52, pp.617–632.
- Gorji, T.; Sertel, E.; Tanik, A. 2017. Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Indic., 74, pp. 384–391.
- Hengl, T. Rossiter, D.G. and Husnjak, S. 2002. Mapping soil properties from an existing national soil data set using freely available ancillary data. 17th World Congress of Soil Science. Thailand.
- Hengl, T. Toomanian, N. Reuter, H. and Malakouti, M. J. 2007. Methods to interpolate soil categorical variables from profile observations: Lessons from Iran. Geoderma 140: pp. 417-427.
- Hengl, T.; Heuvelink, G.B.M.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; Jesus, J.; Tamene, L.; et al. 2015. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE, 10, 0125814.
- Heung, B. Bulmer, C.E. and Schmidt, M.G. 2014. Predictive soil parent material mapping at a regional-scale: a random forest approach. Geoderma. 214, pp. 141-154.
- Heung, B. H.C. Ho, J. Zhang, A. Knudby, C.E. Bulmer, and Schmidt, M.G. 2016. An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma. 265, pp. 62-77
- Hosmer, D.W. and Lemeshow, S. (2000). Applied logistic regression. John Wiley & Sons. New York. pp 392.
- Jiang, H.; Shu, H. 2019. Optical remote-sensing data based research on detecting soil salinity at different depth in an arid-area oasis, Xinjiang, China. Earth Sci. Inform. 12,pp. 43–56.
- Li, J.; Pu, L.; Han, M.; Zhu, M.; Zhang, R.; Xiang, Y. 2014. Soil salinization research in China: Advances and prospects. J. Geogr. Sci. 24, pp. 943–960.
- Liu, J. Pattey, E. Nolin, M.C. Miller, J.R. and Ka, O. 2008. Mapping within-field soil drainage using remote sensing, DEM and apparent soil electrical conductivity. Geoderma,143, pp. 261–272.
- Ma, S.; He, B.; Ge, X.; Luo, X. 2023. Spatial prediction of soil salinity based on the Google Earth Engine platform with multitemporal synthetic remote sensing images. Ecol. Inform. 75, 102111.
- Mehnatkesh, A. Ayoubi, S. Jalalian, A. and Sahrawat, K. 2013. Relationships between Soil depth and terrain attributes in a semi arid hilly region in western Iran. Journal of Mountain Science 10, pp.163-172.
- Minasny, B. and McBratney, A. B. 2006. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers and Geosciences 32, pp.1378-1388.
- Moore, I. D. Grayson, R.B. and Ladson, A.R. 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological processes. 5, pp. 3-30.
- Mougenot, B.; Pouget, M.; Epema, G. 1993. Remote sensing of salt affected soils. Remote Sens. Rev. 7, pp. 241–259.
- Nanni, M.R.; Demattê, J.A.M. 2006. Spectral reflectance methodology in comparison to traditional soil analysis. Soil Sci. Soc. Am. J. 70,pp. 393–407.
- Nemes, A. Rawls, W.J. and Pachepsky, Y.A. 2006. Use of the nonparametric nearest neighbor approach to estimate soil hydraulic properties. Soil Science Society of America Journal, 70,pp. 327–336.
- Pachepsky, Y.A. Timlin, D.J. and Rawls, W.J. 2001. Soil water retention as related to topographic variables. Soil Science Society of America Journal 65,pp. 1787–1795.
- Pahlavan Rad, M. R. Khormali, F. Toomanian, N. Brungard, C.W. Kiani, F. Komaki, C.B. and Bogaert, P. 2016. Legacy soil maps as a covariate in digital soil mapping: A case study from Northern Iran. Geoderma. 279, pp.141-148.
- Parastatidis, D.; Mitraka, Z.; Chrysoulakis, N.; Abrams, M. 2017. Online global land surface temperature estimation from Landsat. Remote Sens., 9, 1208.
- Schoeneberger, P.J. Wysocki, D.A. Benham, E.C. Soil Survey Staff. 2012. Field book for describing and sampling soils. 3nd Version. Natural Resources Conservation Service. National Soil Survey Center. Lincoln, NE.
- Scudiero, E.; Skaggs, T.H.; Corwin, D.L. 2017. Simplifying field-scale assessment of spatiotemporal changes of soil salinity. Sci. Total Environ. 587,pp. 273–281.
- Scull, P. Franklin, J. and Chadwick, O.A. 2005. The application of classification of tree analysis to soil type prediction in a desert landscape. Model. 181,pp. 1-15.
- Shi, H.; Hellwich, O.; Luo, G.; Chen, C.; He, H.; Ochege, F.U.; Van de Voorde, T.; Kurban, A.; De Maeyer, P. A. 2021. global meta-analysis of soil salinity prediction integrating satellite remote sensing, soil sampling, and machine learning. IEEE Trans. Remote Sens., 60, 4505815.
- Sreenivas, K. Dadhwal, V.K. Kumar, Harsha, G.S. Mitran, T. Sujatha, G. and Ravisankar, T. 2016. Digital mapping of soil organic and inorganic carbon status in India. Geoderma. 269, pp.160-173.
- Tian, A.; Fu, C.; Yau, H.-T.; Su, X.-Y.; Xiong, H. 2019. A new methodology of soil salinization degree classification by probability neural network model based on centroid of fractional lorenz chaos self-synchronization error dynamics. IEEE Trans. Remote Sens., 58,pp. 799–810.
- Triki Fourati, H.; Bouaziz, M.; Benzina, M.; Bouaziz, S. 2017. Detection of terrain indices related to soil salinity and mapping salt-affected soils using remote sensing and geostatistical techniques. Monit. Assess. 189, 177.
- Valavi, R. Elith, J. José, J. Lahoz, M. Gurutzeta, G. 2018. Block CV: an R package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models.Biorxiv.
- Wang, H.; Jia, G. 2012. Satellite-based monitoring of decadal soil salinization and climate effects in a semi-arid region of China. Atmos. Sci. 29,pp. 1089–1099.
- Wang, Q.; Li, P.; Chen, X. 2012. Retrieval of soil salt content from an integrated approach of combining inversed reflectance model and regressions: An experimental study. IEEE Trans. Remote Sens. 50,pp. 3950–3957.
- Wang, Z.; Zhang, F.; Zhang, X.; Chan, N.W.; Ariken, M.; Zhou, X.; Wang, Y. 2021. Regional suitability prediction of soil salinization based on remote-sensing derivatives and optimal spectral index. Total Environ. 775, 145807.
- Wu, D.; Jia, K.; Zhang, X.; Zhang, J.; Abd El-Hamid, H.T. 2021. Remote sensing inversion for simulation of soil salinization based on hyperspectral data and ground analysis in Yinchuan, China. Resour. Res. 30, pp. 4641–4656.
- Xiong, J.; Thenkabail, P.S.; Tilton, J.C.; Gumma, M.K.; Teluguntla, P.; Oliphant, A.; Congalton, R.G.; Yadav, K.; Gorelick, N. 2017. Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth Engine. Remote Sens., 9, 1065.
- Zhang, Q.; Li, L.; Sun, R.; Zhu, D.; Zhang, C.; Chen, Q. 2020. Retrieval of the soil salinity from Sentinel-1 Dual-Polarized SAR data based on deep neural network regression. IEEE Geosci. Remote Sens. Lett., 19, 4006905.
- Zhang, Z.; Fan, Y.; Zhang, A.; Jiao, Z. 2022. Baseline-Based Soil Salinity Index (BSSI): A Novel Remote Sensing Monitoring Method of Soil Salinization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 16,pp. 202–214.
- Zinck, J.K. 1989. Physiography and soil. Lecture notes for K6 course. Soil Division. Enschede, The Netherlands. 156 p.
- Zolfaghari, A. A. Tirgar Soltani, M. T. Dyck, M. and Weldeyohannes, A. 2013. Comparison of K-nearest neighbor and artificial neural network methods for predicting cation exchange capacity of soil. 50th anniversary Alberta soil science workshop. Book of Abstracts. p. 48.
|