- بنیاد، ا. و حاجی قادری، ط. 1386. تهیه نقشه جنگلهای طبیعی استان زنجان با استفاده از دادههای سنجنده +ETM ماهواره لندست ۷. نشریه تولید و فرآوری محصولات زراعی و باغی، ۱۱ (۴۲): 638-627.
- درودیان، ح. و درودیان، ع.1396. پیامدهای اجتماعی و بومشناختی تغییر بیرویه کاربری اراضی کشاورزی. مدیریت اراضی، 5 (2): 97-81.
- ریاحی، و.، ضیاییان فیروزآبادی، پ.، عزیزپور، ف. و دارویی، پ. 1398. تعیین و بررسی سطح زیرکشت محصولات زراعی در ناحیه لنجانات با استفاده از تصاویر ماهوارهای. تحقیقات کاربردی علوم جغرافیایی (علوم جغرافیایی)، 19(52)، 169-147.
- عبیات، د.، عبیات، م. و عبیات، م. 1401. بررسی کارایی روشهای طبقهبندی و شاخصهای طیفی در برآورد سطح زیرکشت محصولات زراعی شهرستان شوش. آب و خاک (علوم و صنایع کشاورزی)، 36 (4)، 509-493.
- علیپور، ف.، آقخانی، م.، عباسپور فرد، م.ح. و سپهر، ع. 1393. تفکیک محدوده و تخمین سطح زیر کشت محصولات کشاورزی به کمک تصاویر ماهوارهای. ماشینهای کشاورزی، 4(2)، 254-244.
- فیضیزاده، ب.، خدمتزاده، ع. و نیکجو، م. 1397. ریز طبقهبندی اراضی باغی و زراعی با استفاده از تکنیکهای پردازش شی پایه و الگوریتمهای فازی با هدف تخمین سطح زیر کشت. تحقیقات کاربردی علوم جغرافیایی (علوم جغرافیایی)، 18(48)، 216-201.
- وزارت جهاد کشاورزی، 1402. آمارنامه کشاورزی (جلد اول: محصولات زراعی). معاونت برنامهریزی اقتصادی، مرکز آمار، فناوری اطلاعات و ارتباطات.
- Asmar, E., Vahidnia, M.H., Rezaei, M. and Amiri, E. 2024. Remote sensing-based paddy yield estimation using physical and FCNN deep learning models in Gilan province, Iran. Remote Sensing Applications: Society and Environment, 34, 101199.
- Chen, B., Xiao, X., Li, X., Pan, L., Doughty, R., Jinwei Dong, J.M., Qin, Y., Zhao, B., Wu, , Sun, R., Lan, G., Xie, G., Clinton, N. and Giri, C. 2017. A Mangrove Forest Map of China in 2015: Analysis of Time Series Landsat 7/8 and Sentinel-1A Imagery in Google Earth Engine Cloud Computing Platform. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 104-120.
- Dong, J. and Xiao, X. 2016. Evolution of regional to global paddy rice mapping methods: A review. ISPRS J. Photogramm. Remote Sens. 119, 214–227.
- Fatchurrachman, Rudiyanto, Soh, N., Shah, R.M., Giap, S.G.E., Setiawan, B.I. and Minasny, B. 2022. High-Resolution Mapping of Paddy Rice Extent and Growth Stages across Peninsular Malaysia Using a Fusion of Sentinel-1 and 2 Time Series Data in Google Earth Engine. Remote Sensing. 14 (8), 1-22.
- Gascon, F, Bouzinac, C, Thépaut, O, Jung, M, Francesconi, B, Louis, J, Lonjou, V, Lafrance, B, Massera, S, Gaudel-Vacaresse, A. 2017. Copernicus Sentinel-2A Calibration and Products Validation Status. Remote Sensing. 9 (6): 584.
- Geli, Z., Xiangming, X., Jinwei, D., Weili, K., Cui, J., Yuanwei, Q., Yuting, Z., Jie, W., Michael, A.M., and Chandrashekhar, B. 2015. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data. ISPRS J. Photogramm. Remote Sens. 1 (106), 156–171.
- Gorelick, N., Hancher, M., Dixon, M. And Ilyushchenko, S. 2017. Google Earth Engine: Planetary-scale Geospatial Analysis for Everyone, Remote Sensing of Environment, 202 (1), 18-27.
- Hudait, M. and Patel, P.P. 2022. Crop-type mapping and acreage estimation in smallholding plots using Sentinel-2 images and machine learning algorithms: Some comparisons. Remote Sensing and Space Science, 25 (1): 147-156.
- Igué, M., Houndagba, C.J., Gaiser, T. and Stahr, K. 2012. Accuracy of the Land Use/Cover classification in the Oueme Basin of Benin (West Africa). International Journal of AgriScience, 2(2): 174-184.
- Jaafari, S.H., and Nazarisamani, A.A. 2013. Comparison between land use/land cover mapping through Landsat and Google Earth imagery. American-Eurasian Journal of Agriculture & Environment Science, 13 (6): 763-768.
- Jin, X., Li, Z., Feng, H., Ren, Z. and Li, S. 2020. Deep neural network algorithm for estimating maize biomass based on simulated sentinel 2A vegetation indices and leaf area index. The Crop Journal, 1 (8), 87–97.
- Latham, J. 2009. FAO Land Cover Mapping Initiatives. In Proceedings of the North American Land Cover Summit, Washington, DC, USA, 20–22. Environment and Natural Resources Service of the Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 75–95.
- Li, Y., Li, X., Zhang, Y., Peng, D. and Bruzzone, L. 2023. Cost-efficient information extraction from massive remote sensing data: When weakly supervised deep learning meets remote sensing big data. International Journal of Applied Earth Observation and Geoinformation, 120, 103345.
- Lillesand, T., Kiefer, R.W. and Chipman, J. 2004. Remote Sensing and Image Interpretation. John Wiley and Sons. New York, p. 720.
- Liu, X., Hu, G., Chen, Y., Li, X., Xu, X., Li, S., Pei, F. and Wang, S. 2018. High-Resolution Multi-Temporal Mapping of Global Urban Land Using Landsat Images Based on the Google Earth Engine Platform. Remote Sensing of Environment, 209, 227-239.
- Lu, D., Moran, E. and Batistella. M. 2003. Linear mixture model applied to Amazonian vegetation classification. Remote Sensing of Environment. 87: 456-469.
- Moussavi, S.A., Abbaszadeh Tehrani, N., and Janalipour, M. 2020. Estimation of wheat area cultivation using Sentinel 2 satellite images, Case study: Sojasroud Region, Khodabandeh City, Zanjan Province. Environmental Research and Technology, 7(7): 77-90.
- Nguyen-Thanh, S., Chi-Farn, C., Cheng-Ru, C. and Horng-Yuh, G., 2020. Classification of multitemporal Sentinel-2 data for field-level monitoring of rice cropping practices in Taiwan. Adv. Space Res. 1, 65.
- Nyaga, J.W., Markert, K.N., Thomas, A.B., Mugo, R.M., Wahome, A.M. and Irwin, D. Water Quality Monitoring of In Land Lakes in East Africa. AGUFM, 40 (1), 1-7.
- Pageot, Y., Baup, F., Inglada, J., Baghdadi, N., and Demarez, V. 2020. Detection of irrigated and rainfed crops in temperate areas using Sentinel-1 and Sentinel-2 time series. Remote Sensing, 12(18):
- Remy, F., Vincent, B., David, C. and Gerard, D. 2020. Combined use of multi-temporal Landsat-8 and Sentinel-2 images for wheat yield estimates at the intra-plot spatial scale. Agronomy, 1 (10), 327.
- Rezaei, M., Shahnazari, A., Raeini Sarjaz, M. and Vazifedoust, M. 2016. Improving agricultural management in a large-scale paddy field by using remotely sensing data in the CERES-Rice model. Irrigation and drainage, 65: 224-228
- Sarker, I.H. 2021. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science. 2 (160).
- Soler-Perez-Salazar, M.J., Ortega-García, N., Vaca-Mier, M. and Cram-Hyedric, S. 2021. Maize and sorghum field segregation using multi-temporal Sentinel-2 data in Central Mexico. Society of Photo-Optical Instrumentation Engineers, 1 (15), 024513.
- Teluguntla, P., Thenkabail, P.S., Oliphant, A., Xiong, J., Gumma, M.K., Congalton, R.G., Yadav, K. and Huete, A. 2018. A 30-m Landsat-Derived Cropland Extent Product of Australia and China Using Random Forest Machine Learning Algorithm on Google Earth Engine Cloud Computing Platform, ISPRS Journal of Photogrammetry and Remote Sensing, 144, 325-340.
- Thenkabail, P.; Lyon, J.G.; Turral, H. and Biradar, C. 2009. Remote Sensing of Global Croplands for Food Security; CRC Press: Boca Raton, FL, USA.
- Verde, N.; Kokkoris, I.P.; Georgiadis, C.; Kaimaris, D.; Dimopoulos, P.; Mitsopoulos, I. and Mallinis, G. 2020. National Scale Land Cover Classification for Ecosystem Services Mapping and Assessment, Using Multitemporal Copernicus EO Data and Google Earth Engine. Remote Sens., 12 (20):
- Xiong, J., Thenkabail, P., Gumma, M., Teluguntla, P., Poehnelt, J., Congalton, R., Kamini, Y. and Thau, D. 2017. Automated Cropland Mapping of Continental Africa Using Google Earth Engine Cloud Computing. Journal of Photogrammetry and Remote Sensing, 126, 225-244
- Zhang, B., Chen, Z., Peng, D., Benediktsson, J.A., Liu, B., Zou, L. and Li J. 2019. Plaza A. Remotely sensed big data: Evolution in model development for information extraction. Proceedings of the IEEE, 107 (12), 2294-2301.
- Zhao, R.; Li, Y. and Ma, M. 2021. Mapping Paddy Rice with Satellite Remote Sensing: A Review. Sustainability.13 (2), 503.
|