Alewell, C., Borrelli, P., Meusburger, K., Panagos, P., 2019. Using the USLE: chances, challenges and limitations of soil erosion modelling. Int. Soil Water Conserv. Res. 7,203-225
Amponsah, P.O., Forson, E.D., Sungzie, P.S., Akosuah Loh, Y.S., 2023. Groundwater prospectivity modeling over the Akatsi Districts in the Volta Region of Ghana using the frequency ratio technique. Model. Earth Sys. Environ. 9,937-955.
Arabameri, A., Cerda, A., Rodrigo-Comino, J., Pradhan, B., Sohrabi, M., Blaschke, T., Tien, B.D., 2019. Proposing a novel predictive technique for gully erosion susceptibility mapping in arid and semiarid regions (Iran). Remote Sens. 11, 2577.
Arshad, A., Zhang, Z., Zhang, W., Dilawar, A., 2020. Mapping favorable groundwater potential recharge zones using a gis-based analytical hierarchical process and probability frequency ratio model: a case study from an agro-urban region of pakistan. Geosci. Front. 11(5),1805-1819
Asmare, D., 2023. Application and validation of AHP and FR methods for landslide susceptibility mapping around choke mountain, northwestern Ethiopia. Sci. African 19, e01470.
Azareh, A., Rahmati, O., Rafiei-Sardooi, E., Sankey, J.B., Lee, S., Shahabi, H., Ahmad, B., 2019. Modelling gully-erosion susceptibility in a semi-arid region, Iran: investigation of applicability of certainty factor and maximum entropy models. Sci. Total Environ. 655,684-696
Bisht, S., Rawat, K.S., Singh, S.K., 2024. Earth observation data and GIS based landslide susceptibility analysis through frequency ratio model in lesser Himalayan region, India. Quarter. Sci. Advanc. 13, 100141.
Botero-Acosta, A., Chu, M.L., Guzman, J.A., Starks, P.J., Moriasi, D.N., 2017. Riparian erosion vulnerability model based on environmental features. J. Environ. Manag. 203,592-602
Cama, M., Schillaci, C., Kropacek, J., Hochschild, V., Bosino, A., Marker, M., 2020. A probabilistic assessment of soil erosion susceptibility in a head catchment of the jemma basin. Ethiop. Highl. Geosci. 10(7), 248.
Cantarino, I., Carrion, M.A., Martínez-Ib´a˜nez, V., Gielen, E., 2023. Improving landslide susceptibility assessment through frequency ratio and classification methods-case study of Valencia region (Spain). Appl. Sci. 13 (8), 5146.
Chakrabortty, R., Chandra Pal, S., 2023. Modeling soil erosion susceptibility using GIS‑based different machine learning algorithms in monsoon dominated diversified landscape in India. Model. Earth Sys. Environ. 9,2927-2942
Chen, Y., Chen, W., Janizadeh, S., Bhunia, G.S., Bera, A., Pham, Q.B., Linh, N.T.T,, Balogun, A., Wang, X., 2022. Deep learning and boosting framework for piping erosion susceptibility modeling: spatial evaluation of agricultural areas in the semi-arid region. Geocarto. Int. 37(16),1-28.
Clarke, M.L., Rendell, H.M., 2006. Process-form relationships in Southern Italian badlands: Erosion rates and implications for landform evolution. Earth Sur. Process. Landform. 31, 15-29.
Das, P., Saha, T.K., Mandal, I., Debanshi, S., Pal, S., 2023. Evolution of rills and gullies in lateritic badland region of Indian Rarh tract. J. Earth Sys. Sci. 132, 7
Fadul, H.M., Salih, A.A., Imad-eldin, A.A., Inanaga, S., 1999. Use of remote sensing to map gully erosion along the Atbara River, Sudan. Int. J. Applied Earth Observ. Geoinform. 1(3),175-180.
Gabriele, M., Brumana, R., Previtali, M., Cazzani, A., 2023. A combined GIS and remote sensing approach for monitoring climate change‑related land degradation to support landscape preservation and planning tools: the Basilicata case study. Applied Geomatics. 15, 497-532
Gallart, F., Sole, A., Puigdefa`bregas, J., La´zaro, R., 2002. Badland systems in the Mediterranean. In: Bull LJ, Kirkby MJ (eds) Dryland rivers: hydrology and geomorphology of semi-arid channels. Wiley, London. pp 299-326
Ghosh, S., Bhattacharya, K., 2012. Multivariate erosion risk assessment of lateritic badlands of Birbhum (West Bengal, India): a case study. J. Earth Syst. Sci. 121 (6),1441-1454
Guo, Z., Guo, F., Zhang, U., He, J., Li, G., Yang, Y., Zhang, X., 2023. A python system for regional landslide susceptibility assessment by integrating machine learning models and its application. Heliyon. 9, e21542.
Hembram, K., Paul, G.C., Saha, S., 2018. Spatial prediction of susceptibility to gully erosion in Jainti River basin, Eastern India: a comparison of information value and logistic regression models. Model Earth Syst. Environ. 5, 689-708
Hoekstra, A.Y., Wiedmann, T.O., 2014. Humanity’s unsustainable environmental footprint. Sci. 344(6188), 1114-1117
Imumorin, P., Azam, S., 2011. Effect of precipitation on the geological development of badlands in arid regions. Bull. Eng. Geol. Environ. 70, 223-229
Kannan, M., Saranathan, E., Anabalagan, R., 2013. Landslide vulnerability mapping using frequency ratio model: a geospatial approach in Bodi-Bodimettu Ghat section, Theni district, Tamil Nadu, India. Arabian J. Geosci. 6(8), 2901-2913.
Lei, X., Chen, W., Avand, M., Janizadeh, S., Kariminejad, N., Shahabi, H., Costache, R., Shahbi, H., Shirzadi, A., Mosavi, A., 2020. GIS-based machine learning algorithms for gully erosion susceptibility mapping in a semi-arid region of Iran. Remote Sens. 12(15), 2478.
Liao, X., Carin, L., 2009. Migratory logistic regression for learning concept drift between two data sets with application to UXO sensing. IEEE Trans. Geosci. Remote Sens. 47, 1454-1466
Mekonnen, M., Keesstra, S.D., Baartman, J.E.M., Stroosnijder, L., Maroulis, J., 2016. Reducing sediment connectivity through manmade and natural sediment sinks in the Minizr catchment. Northwest Ethiopia. Land Degrada. Develop. 28, 708-717.
Mohammady, M., 2024. Land subsidence susceptibility asessment in semnan plain. Iran-Watershed Manage. And Sci. Engin. 14(63), 84-91 (in Persian).
Mohammady, M., Davudirad, A., 2024. Gully Erosion susceptibility assessment using different machine learning algorithms: a case study of Shazand Watershed in Iran. Environ. Model. Assess. 29, 249-261.
Mohammady, M., Pourghasemi, H.R., Pradhan, B., 2012. Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster-Shafer and weights-of-evidence models. J. Asian Earth Sci. 61, 221-236.
Mohammady, M., Pourghasemi, H.R., Amiri. M., 2019. Assessment of land subsidence susceptibility in Semnan plain (Iran): a comparison of support vector machine and weights of evidence data mining algorithms. Nat. Hazards. 99,951-971
Mohammady, M., Pourghasemi, H.R., Yousefi, S., 2022. Badland erosion mapping and effective factors on its occurrence using random forest model. Computers Earth Environ. Sci. 42, 577-583.
Moretti, S., Rodolfi, G., 2000. A typical ‘‘calanchi’’ landscape on the Eastern Apennine margin (Atri, Central Italy): geomorphological features and evolution. Catena. 40, 217-228
Mosavi, A., Golshan, M., Janizadeh, S., Chobin, B., Melesse, A.M., Dineva, A.A., 2022. Ensemble models of GLM, FDA, MARS, and RF for flood and erosion susceptibility mapping: a priority assessment of sub-basins. Geocarto Int. 37 (9), 2541-2560.
Nadal-Romero, E., Martínez-Murillo, J.F., Kuhn, N.J., 2019. Badland dynamics in the context of global change. Elsevier, Amsterdam. pp 277–313.
Nefeslioglu, H.A., Duman, T.Y., Durmaz, S., 2008. Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Easten Black Sea Region of Turkey). Geomorphol. 94, 401-418.
Nhu, V., Janizadeh, S., Avand, M., Chen, W., Farzin, M., Omidvar, E., Shirzadi, A., Shabani, H., Clague, J.J., Jaffari, A., Mansoorypoor, F., Pham, B.T., Ahmad, B.B., Lee, S., 2020. GIS-based gully erosion susceptibility mapping: a comparison of computational ensemble data mining models. Appl. Sci. 10(6), 2039.
Ranga, V., Poesen, J., Rompaey, A.V., Mohapatra, S.N., Pani, P., 2016. Detection and analysis of badlands dynamics in the Chambal river valley (India), during the last 40 (1971-2010) years. Environ. Earth Sci. 75, 183
Rasyid, A.R., Bhandary, N.P., Yatabe, R., 2016. Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain. Indonesia Geoenviron. Disasters. 3, 19.
Sahana, M., Hong, H., Sajjad, H., Liu. J., Zhu, A., 2018. Assessing deforestation susceptibility to forest ecosystem in Rudraprayag district, India using fragmentation approach and frequency ratio model. Sci. Total Environ. 627, 1264-1275.
Saleh, A., Yuzir, A., Sabtu, N., 2022. Flash flood susceptibility mapping of sungai pinang catchment using frequency ratio. Sains. Malaysiana. 51(1), 51-65.
Sarkar, D., Mondal, P., 2020. Flood vulnerability mapping using frequency ratio (fr) model: a case study on kulik river basin, indobangladesh barind region. Appli. Water Sci. 10,1-13.
Singh, P., Sur, U., Kumar Rai, P., Singh, S.K., 2023. Landslide susceptibility prediction using frequency ratio model: a case study of Uttarakhand, Himalaya (India). Proceedings of the Indian National Science Academy. 89, 600-612
Tien Bui, D., Shirzadi, A., Shabani, H., Chapi, K., Omidvar, E., Pham, B.T., Talebpour Asl, D., Khaledian, H., Pradhan, B., Panahi, M., Ahmad, B.B., Rahmani, H., Crof, G., Lee, S., 2019. A novel ensemble artificial intelligence approach for gully erosion mapping in a semi-arid watershed (Iran). Sensors 19(11), 2444
van Wijk, D., Teurlincx, S., Brederveld, R.J., 2022. Smart nutrient retention networks: a novel approach for nutrient conservation through water quality management. Inland Waters 12, 138-153.
Wang, D., Fan, H., Fan, X., 2017. Distributions of recent gullies on hillslopes with different slopes and aspects in the black soil region of northeast China. Environ. Monitor. Assess. 189, 508.
Zhang, A., Zhao, X.W., Zhao, X.Y., Zheng, X.Z., Zeng, M., Huang, X., Wu, P., Jiang, T., Wang, S.C., He, J., Li, Y.Y., 2024. Comparative study of different machine learning models in landslide susceptibility assessment: a case study of Conghua District, Guangzhou, China. China Geology 7, 104-115.