Angileri SE, Conoscenti C, Hochschild V, Märker M, Rotigliano E, Agnesi V. 2016. Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy). Geomorphology, 262(73): 61-76. https://doi.org/10.1016/j.geomorph.2016.03018.
Azedou A, Lahssini S, Khattabi A, Meliho M, Rifai N. 2021. A methodological comparison of three models for gully erosion susceptibility mapping in the rural municipality of El Faid (Morocco). Sustainability, 13(2):658-682.
https://doi.org/10.3390/su13020682.
Ciccolini Ugo, Margherita Bufalini, Marco Materazzi, Francesco Dramis. 2024. Gully erosion development in drainage basins: A new morphometric approach land, 13, no. 6(32): 792. https://doi.org/10.3390/land13060792
Conoscenti C, Rotigliano E. 2020. Predicting gully occurrence at watershed scale: Comparing topographic indices and multivariate statistical models. Geomorphology, pp. 335- 359. https://doi.org/10.1016/j.geomorph.2020.107123
Conoscenti C, Angileri S, Cappadonia C, Rotigliano E, Agnesi V, Märker M. 2014. Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily (Italy). Geomorphology, 204(1): 399–411. https://doi.org/10.1016/j.geomorph.2013.08.021.
Dube F, Nhapi I, Murwira A, Gumindoga W, Goldin J, Mashauri DA. 2014. Potential of weight of evidence modeling for gully erosion hazard assessment im Mbire Distract- Zimbabwe. Physics and Chemistry of the Earth, 67(69):145-152. https://doi.org/10.1016/j.pce.2014.02002.
Entezari M, Maleki A, Moradi Kh, Elfati S. 2014. Investigation of gully erosion in Deira catchment using weighted ntegration method and waterway capacity index. Geographical Research Quarterly, 3 (118): 297-312. (In Persian). http:// doi.org/10.1016/ G RQ.2014.02.532.
Gayen A, Pourghasemi HR, Saha S, Keesstra S, Bai S. 2019. Gully erosion susceptibility assessment and management of hazardprone areas in India using different machine learning algorithms, Science of the Total Environment, 668(45):124-138.
https://doi.org/10.1016/j.scitotenv.2019.02.436.
Gideon D, Mustafa FB, Victor I. 2021. The application of an expert knowledge‐driven approach for assessing gully erosion susceptibility in the subtropical Nigerian savannah. Singapore Journal of Tropical Geography, 42(1): 107-131. https://doi.org/10.1111/sjtg.12348.
Hitouri S, Varasano A, Mohajane M, Ijlil S, Essahlaoui N, Ali SA, Essahlaoui A, Pham QB, Waleed M, Palateerdham SK, Teodoro AC. 2022. Hybrid machine learning approach for gully erosion mapping susceptibility at a watershed scale. ISPRS International Journal of Geo-Information, 11(7): 384-40. https://doi.org/10.3390/ijgi11070401
Igwe O, John UI, Solomon O, Obinna O. 2020. GIS-based gully erosion susceptibility modeling, adapting bivariate statistical method and AHP approach in Gombe town and environs Northeast Nigeria. Geoenvironmental Disasters, 7(12): 1-16. https://doi.org/10.1186/s40677-020-00166-8
Jafari Gorzin B, Kavian A, Solaimani K. (2023). Investigation of Land use Changes and Its Role in the Hydrology of the Upstream Areas of Siahroud Watershed. J Watershed Manage Res. 14(27): 26-37. https://doi.org/:10.61186/jwmr.14.27.26
Jancewicz K, Migoń P, Kasprzak M. 2019. Connectivity patterns in contrasting types of tableland sandstone relief revealed by Topographic Wetness Index. Science of the Total Environment, 656(243): 1046-1062. https://doi.org/10.1111/sjtg.12348
Lana JC, Castro PDTA, Lana CE. 2022. Assessing gully erosion susceptibility and its conditioning factors in southeastern Brazil using machine learning algorithms and bivariate statistical methods: A regional approach. Geomorphology, 324(48):378-402. https://doi.org/10.1016/j.geomorph.2022.108159
Lei X, Chen W, Avand M, Janizadeh S, Kariminejad N, Shahabi H, Costache R, Shahabi H, Shirzadi A, Mosavi A. 2020. GIS-based machine learning algorithms for gully erosion susceptibility mapping in a semi-arid region of Iran. Remote Sensing, 12(15):147-172. https://doi.org/10.3390/rs.12152478
Liuzzo L, Sammartano V, Freni G. 2019. Comparison between different distributed methods for flood susceptibility mapping. Water Resources Management, 33)4):3155-3173. https://doi.org/10.5194/nhess.2020-332
Maerker M, Que´ne´herve G, Bachofer F, Mori S. 2015. A simple dem assessment procedure for gully system analysis in the lake Manyara Area, northern Tanzania.79(24):235–253. https://doi.org/10.3390/su151512056
Mohtashami Borzadaran, G R. 2021. Bayesian perspective over time. Statistical Thinking, 25 (2):1-11. https://doi.org/10.2048/StT.2020-332
Rahmati O, Tahmasebipour N, Haghizadeh A, Pourghasemi HR, Feizizadeh B. 2017. Evaluating the influence of geo-environmental factors on gully erosion in a semi-arid region of Iran: An integrated framework. Science of the Total Environment, 579(78): 913-927. (In Persian). https://doi.org/10.1016/j.scitotenv.2016.10.176
Rangzan K, zaheri Abdehvand Z, Mokarram M. 2022. Determining areas prone to gully erosion using fuzzy membership function (Case study: Mohr City in the south of Fars Province), Quantitative Geomorphological Research, 10(4): 56-74. https://doi.org/20.1001.1.22519424.1401.10.4.4.9
Roy J, Saha S. 2019. GIS-based gully erosion susceptibility evaluation using frequency ratio, cosine amplitude and logistic regression ensembled with Fuzzy logic in Hinglo River Basin, India, Remote Sensing Applications: Society and Environment, https://doi.org/10.1016/j.rsase.2019.100247
Saber chenari K, Bahremand A, Sheikh VB, Komaki CB. 2016. Gully erosion hazard zoning using of Dempster-Shafer Model in the Gharnaveh Watershed, Golestan Province, Iranian Journal of Ecohydrology, 3(2): 219-231. https://doi.org/ 10.22059/ije.2016.59663
Saeediyan H, shirani K, salajegheh A, ahmadi R. 2023. Investigating the performance of the entropy maximum model in determining the importance of effective environmental factors in creating gully erosion in semi-arid areas. Journal of New Approaches in Water Engineering and Environment, 2(1): 129-144. https://doi.org/10.22034/nawee.2023.407297.1047
Shadfar S. 2015. Determination of gully erosion potential using artificial neural network, case study: Turud watershed. Watershed Engineering and Management, 8(3): 256-263. (In Persian). https://doi.org/10.22092/ijwmse.2016.106809
Shahrivar A, Shadfar S, Khazaei M, Adeli B. 2016. Evaluation of trench erosion zoning methods (Case study: Abgandi Watershed). Ecohydrology, 4(1): 119-132. (In Persian). https://doi.org/10.22059/IJE.2017.60893
Shi Q, Wang W, Guo M, Chen Z, Feng L, Zhao M, Xiao H. 2020. The impact of flow discharge on the hydraulic characteristics of headcut erosion processes in the gully region of the Loess Plateau. Hydrological Processes, 34(3): 718-729.
https://doi.org/10.1002/hyp.13620
Shit PK, Bhunia GS, Pourghasemi HR. 2020. Gully erosion susceptibility mapping based on bayesian weight of evidence. Gully Erosion Studies from India and Surrounding Regions, 94(35):133-146. https://doi.org/10.1007/978-3-030-23243-68
Shirani K. 2020. Gully erosion mapping and susceptibility assessment using statistical and probabilistic methods. Journal of Water and Soil Sciences, 25 (2):151-174. https://doi.org/10.47176/jwss.25.2.147215
Soleimani F, Kalehhouei M, Lotfollazadeh D. 2023. Study of the morphological characteristics of gullies in Khuzestan Province. Watershed Management Research Journal, 36(3): 23-41. (In Persian). https://doi.org/10.22092/wmrj.2023.360375.1497
Soleimanpour SM, Pourghasemi HR, Zare M. 2021. A comparative assessment of gully erosion spatial predictive modeling using statistical and machine learning models. Catena, 207(43): 342-361. https://doi.org/10.1016/j.catena.2021.105679
Sufi M, Issai H, Davoudi Rad AA, Zanjani Jam M, Shadfar S, Niknam M. and Nowrozi Kh. 2017. Investigation of the threshold of watershed erosion slope in Iran, phase 1: Fars, Golestan, Markazi and Zanjan Provinces, Research Project, Soil Conservation and Watershed Research Institute, Agricultural Research, Education and Extension Organizations, 83 p. (In Persian).
Sun L, Liu YF, Wang X, Liu Y, Wu GL. 2022. Soil nutrient loss by gully erosion on sloping Alpine steppe in the Northern Qin- ghai- Tibetan Plateau.Catena, 218(26):184-208. https://doi.org/10.1016/j.catena.2021.105763
Tadesual A, Setargie M, Ebabu K, Nzioki B, Meshesha TM. 2023. Random Forest–based gully erosion susceptibility assessment across different agro-ecologies of the Upper Blue Nile Bbasin, Ethiopia. Geomorphology, 431(14):241-263
https://doi.org/10.1016/j.geomorph.2023.108671.
Tahmasabipour N, Rahmati A, Qurbani Nejad S. 2015. Prediction of susceptibility to gully erosion in Simera region based on the certainty factor model and determination of the importance of factors affecting it, Ecohydrology, 1(3): 83-93. (In Persian). https://doi.org/10.22059/IJE.2016.59192
Yang S, Guan.Y, Zhao C, Zhang C, Bai J, Chen K. 2019. Determining the influence of catchment area on intensity of gully erosion using high-resolution aerial imagery: A 40-year case study from the Loess Plateau, northern China, Geoderma, 347(83):90-102. https://doi.org/10.1016/j.geoderma.2019.03.042
Yousefi Mobarhan E, Shirani K. 2023. Assessment of maximum entropy (ME) to identify effective factors on gully erosion and determination of sensitive Areas in Alaa Semnan Watershed. Journal of Watershed Management Research. 14(28): 37-54. https://doi.org/10.61186/jwmr.14.28.37
Zakerinejad R, Alvandi P. 2023. Spatial prediction of gully erosion using TanDEM-X data and Maximum Entropy Model (A case study: Khasoyeh Watershed, in Southeast of Fars Province). Environmental Erosion Research Journal, 3(1):96-113. https://doi.org/20.1001.1.22517812.1402.13.1.4.6