- Aktas, H., Abak, K., and Cakmak, I. (2006). Genotypic variation in the response of pepper to salinity. Scientia Horticulturae, 110(3), 260-266. https://doi.org/10.1016/j.scienta.2006.07.017
- Alam, M., Khan, M. A., Imtiaz, M., Khan, M. A., Naeem, M., Shah, S. A., ... & Khan, L. (2020). Indole-3-Acetic Acid Rescues Plant Growth and Yield of Salinity Stressed Tomato (Lycopersicon esculentum L.). Gesunde Pflanzen, 72(1), 87-95.
- Almeida, D. M., Oliveira, M. M., and Saibo, N. J. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and molecular biology, 40, 326-345. https://doi.org/10.1590/1678-4685-gmb-2016-0106
- Andriesse, J. P. (1988). Nature and management of tropical peat soils (No. 59). Food and Agriculture Org.
- Archangi, A., Khodambashi, M., and Mohammadkhani, A. (2012). The effect of salt stress on morphological characteristics and Na+, K+ and Ca+ ion contents in medicinal plant fenugreek (Trigonella foenum graecum L.) under hydroponic culture. Journal of Science and Technology of Greenhouse Culture-Isfahan University of Technology, 3(2), 33-41.
- Ashraf, M. F. M. R., and Foolad, M. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and experimental botany, 59(2), 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006
- Ashraf, M. Y., Hussain, F., Akhter, J., Gul, A. T. T. I. Y. A., Ross, M., and Ebert, G. E. O. R. G. (2008). Effect of different sources and rates of nitrogen and supra optimal level of potassium fertilization on growth, yield and nutrient uptake by sugarcane grown under saline conditions. J. Bot, 40(4), 1521-1531.
- Ashraf, M., Mukhtar, N., Rehman, S. and Rha, E.S. 2004. Salt-induced changes in photosynthetic activity and growth in a potential medicinal plant bishop’s weed (Ammi majus L). Photosynthetica, 42: 543-550. https://doi.org/10.1007/S11099-005-0011-4
- Bernstein, L., Francois, L. E., and Clark, R. A. (1974). Interactive effects of salinity and fertility on yields of grains and vegetables 1. Agronomy Journal, 66(3), 412-421. https://doi.org/10.2134/agronj1974.00021962006600030023x
- Bhatt, M. J., Patel, A. D., Bhatti, P. M., & Pandey, A. N. (2008). Effect of soil salinity on growth, water status and nutrient accumulation in seedlings of Ziziphus mauritiana (Rhamnaceae). Journal of Fruit and Ornamental Plant Research, 16(1), 383-401.
- Böhme, M., and Lua, H. (1996, September). Influence of mineral and organic treatments in the rhizosphere on the growth of tomato plants. In International Symposium Growing Media and Plant Nutrition in Horticulture 450 (pp. 161-168). https://doi.org/10.17660/ActaHortic.1997.450.18
- Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., and Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia horticulturae, 196, 15-27. https://doi.org/10.1016/j.scienta.2015.09.013
- Çimrin, K. M., Türkmen, Ö., Turan, M., and Tuncer, B. (2010). Phosphorus and humic acid application alleviate salinity stress of pepper seedling. African Journal of Biotechnology, 9(36).
- Daur, I., and Bakhashwain, A. A. (2013). Effect of humic acid on growth and quality of maize fodder production. J. Bot, 45(S1), 21-25.
- de Lacerda, C. F., Cambraia, J., Oliva, M. A., and Ruiz, H. A. (2005). Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environmental and Experimental Botany, 54(1), 69-76. https://doi.org/10.1016/j.envexpbot.2004.06.004
- del Amor, F. M., and Cuadra-Crespo, P. (2012). Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Functional Plant Biology, 39(1), 82-90. https://doi.org/10.1071/FP11173
- Delfine, S., Tognetti, R., Desiderio, E., and Alvino, A. (2005). Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agronomy for sustainable Development, 25(2), 183-191. https://doi.org/10.1051/agro:2005017
- Dragišić Maksimović, J., Bogdanović, J., Maksimović, V., and Nikolic, M. (2007). Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese. Journal of Plant Nutrition and Soil Science, 170(6), 739-744. https://doi.org/10.1002/jpln.200700101
- Epstein, E. (1999). Silicon. Annual review of plant biology, 50(1), 641-664. https://doi.org/10.1146/annurev.arplant.50.1.641
- Ferreira-Silva, S. L., Silveira, J. A., Voigt, E. L., Soares, L. S., and Viégas, R. A. (2008). Changes in physiological indicators associated with salt tolerance in two contrasting cashew rootstocks. Brazilian Journal of Plant Physiology, 20(1), 51-59.
- Ferreyra, R. E., Aljaro, A. U., Ruiz, R. S., Rojas, L. P., and Oster, J. D. (1997). Behavior of 42 crop species grown in saline soils with high boron concentrations. Agricultural Water Management, 34(2), 111-124. https://doi.org/10.1016/S0378-3774(97)00014-0
- Flam-Shepherd, R., Huynh, W. Q., Coskun, D., Hamam, A. M., Britto, D. T., and Kronzucker, H. J. (2018). Membrane fluxes, bypass flows, and sodium stress in rice: the influence of silicon. Journal of Experimental Botany, 69(7), 1679-1692. https://doi.org/10.1093/jxb/erx460
- Gee, G. W., and Bauder, J. W. (1979). Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters. Soil Science Society of America Journal, 43(5), 1004-1007. https://doi.org/10.2136/sssaj1979.03615995004300050038x
- Gu, H. H., Zhan, S. S., Wang, S. Z., Tang, Y. T., Chaney, R. L., Fang, X. H., ... and Qiu, R. L. (2012). Silicon-mediated amelioration of zinc toxicity in rice (Oryza sativa L.) seedlings. Plant and soil, 350(1-2), 193-204. https://doi.org/10.1007/s11104-011-0894-8
- Hashemi, A., Abdolzadeh, A., and Sadeghipour, H. R. (2010). Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Science and Plant Nutrition, 56(2), 244-253. https://doi.org/10.1111/j.1747-0765.2009.00443.x
- Isaac, R. A., and Kerber, J. D. (1971). Atomic absorption and flame photometry: Techniques and uses in soil, plant, and water analysis. Instrumental methods for analysis of soils and plant tissue, 17-37. https://doi.org/10.2136/1971.instrumentalmethods.c2
- Kaya, C., Akram, N. A., Ashraf, M., and Sonmez, O. (2018). Exogenous application of humic acid mitigates salinity stress in maize (Zea mays L.) plants by improving some key physico-biochemical attributes. Cereal Research Communications, 46(1), 67-78. https://doi.org/10.1556/0806.45.2017.064
- Khan, M. A., von Witzke-Ehbrecht, S., Maass, B. L., and Becker, H. C. (2009). Relationships among different geographical groups, agro-morphology, fatty acid composition and RAPD marker diversity in safflower (Carthamus tinctorius). Genetic Resources and Crop Evolution, 56(1), 19-30. https://doi.org/10.1007/s10722-008-9338-6
- Liang, Y., Zhang, W., Chen, Q., Liu, Y., and Ding, R. (2006). Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany, 57(3), 212-219. http://dx.doi.org/10.1016/j.envexpbot.2005.05.012
- Lindsay, W. L., and Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal, 42(3), 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
- Lycoskoufis, I. H., Savvas, D., and Mavrogianopoulos, G. (2005). Growth, gas exchange, and nutrient status in pepper (Capsicum annuum L.) grown in recirculating nutrient solution as affected by salinity imposed to half of the root system. Scientia Horticulturae, 106(2), 147-161. https://doi.org/10.1016/j.scienta.2005.02.022
- Maas, E. V., and Hoffman, G. J. (1977). Crop salt tolerance–current assessment. Journal of the irrigation and drainage division, 103(2), 115-134. https://doi.org/10.1061/JRCEA4.0001137
- Mashi, A., GALESHI, S., ZEYNALI, E., & NOURINIA, A. (2008). SALINITY EFFECT ON SEED YIELD AND YIELD COMPONENTS IN FOUR HULL-LESS BARLEY.
- Mazloomi, F., and Ronaghi, A. (2012). Effect of salinity and phosphorus on growth and chemical composition of two varieties of spinach. Journal of Science and Technology of Greenhouse Culture-Isfahan University of Technology, 3(1), 85-96. .(inPersian)
- Meganid, A. S., Al-Zahrani, H. S., and El-Metwally, M. S. (2015). Effect of humic acid application on growth and chlorophyll contents of common bean plants (Phaseolus vulgaris L.) under salinity stress conditions. International Journal of Innovative Research in Science, Engineering and Technology, 4(5), 2651-2660. http://dx.doi.org/10.15680/IJIRSET.2015.0405001
- Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Rev. Plant Biol., 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
- Munns, R., Guo, J., Passioura, J. B., and Cramer, G. R. (2000). Leaf water status controls day-time but not daily rates of leaf expansion in salt-treated barley. Functional Plant Biology, 27(10), 949-957. http://dx.doi.org/10.1071/PP99193
- Nelson, D. W. Sommer. LE 1996. Total Carbon, Organic Carbon and Organic Matter, Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science of America and American Society of Argonomy, SSSA, Page, 961. https://doi.org/10.2136/sssabookser5.3.c34
- Oron, G., DeMalach, Y., Gillerman, L., David, I., and Rao, V. P. (1999). Improved saline-water use under subsurface drip irrigation. Agricultural Water Management, 39(1), 19-33. https://doi.org/10.1016/S0378-3774(98)00088-2
- Paksoy, M., Türkmen, Ö., and Dursun, A. (2010). Effects of potassium and humic acid on emergence, growth and nutrient contents of okra (Abelmoschus esculentus L.) seedling under saline soil conditions. African Journal of Biotechnology, 9(33).
- Parvaiz, M. (2014). Response of Maize to salt stress a critical review. International Journal of Healthcare Sciences (IJHS), 1(1), 13-25.
- Rohanipoor, A., Norouzi, M., Moezzi, A., and Hassibi, P. (2013). Effect of silicon on some physiological properties of maize (Zea mays) under salt stress. Journal of Biological and Environmental Sciences, 7(20).
- Shahbaz, M., and Ashraf, M. (2013). Improving salinity tolerance in cereals. Critical reviews in plant sciences, 32(4), 237-249. https://doi.org/10.1080/07352689.2013.758544
- Singh, A., Sharma, P.C., Meena, M.D., Kumar, A., Mishra, A.K., Kumar, P., Chaudhari, S.K and Sharma, D.K. 2016. Effect of salinity on gas exchange parameters and ionic relations in bael, Aegle marmelos https://doi.org/10.5958/0974-0112.2016.00017.7
- SOLEYMANI, M. R., KAFI, M., ZIAEI, M., & SHABAHANG, J. (2008). EFFECT OF LIMITED IRRIGATION WITH SALINE WATER ON FORAGE OF TWO LOCAL POPULATIONS OF KOCHIA SCOPARIA L. SCHRAD.
- Song, A., Li, P., Li, Z., Fan, F., Nikolic, M., and Liang, Y. (2011). The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant and Soil, 344(1-2), 319-333. https://doi.org/10.1007/s11104-011-0749-3
- Sumner, M. E., and Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 1201-1229. https://doi.org/10.2136/sssabookser5.3.c40
- Thomas, G. W. (1996). Soil pH and soil acidity. Methods of soil analysis: part 3 chemical methods, 5, 475-490. https://doi.org/10.2136/sssabookser5.3.c16
- Tunçtürk, M., Tunçtürk, R., Yildirim, B., and Çiftçi, V. (2011). Effect of salinity stress on plant fresh weight and nutrient composition of some Canola (Brassica napus L.) cultivars. African Journal of Biotechnology, 10(10), 1827-1832. https://doi.org/10.4314/AJB.V10I10
- Türkmen, Ö., Dursun, A., Turan, M., and Erdinç, Ç. (2004). Calcium and humic acid affect seed germination, growth, and nutrient content of tomato (Lycopersicon esculentum L.) seedlings under saline soil conditions. Acta Agriculturae Scandinavica, Section B-Soil and Plant Science, 54(3), 168-174. https://doi.org/10.1080/09064710310022014
- Tuteja, N. (2007). Mechanisms of high salinity tolerance in plants. Methods in enzymology, 428, 419-438. https://doi.org/10.1016/s0076-6879(07)28024-3
- Vojodi, M. L., Hassanpour, A. M., and Valizadeh, K. R. (2018). Effect of NaCl Salinity and ZnSO4 Foliar Application on Yield and Some Physiological Traits of Tagetes erecta L. (In Persian with English abstract) https://doi.org/10.22055/ppd.2020.31067.1825
- Wang, D., Shannon, M. C., and Grieve, C. M. (2001). Salinity reduces radiation absorption and use efficiency in soybean. Field Crops Research, 69(3), 267-277. https://doi.org/10.1016/S0378-4290(00)00154-4
- Wang, X. S., and Han, J. G. (2007). Effects of NaCl and silicon onion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Science and Plant Nutrition, 53(3), 278-285. https://doi.org/10.1111/j.1747-0765.2007.00135.x
- Watanabe, F. S., and Olsen, S. R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America Journal, 29(6), 677-678. https://doi.org/10.2136/sssaj1965.03615995002900060025x
- Winfield, M. O., Lu, C., Wilson, I. D., Coghill, J. A., and Edwards, K. J. (2010). Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnology Journal, 8(7), 749-771. https://doi.org/10.1111/j.1467-7652.2010.00536.x
- Yin, L., Wang, S., Li, J., Tanaka, K., and Oka, M. (2013). Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta physiologiae plantarum, 35(11), 3099-3107. http://dx.doi.org/10.1007/s11738-013-1343-5
- Yiu, J. C., Tseng, M. J., Liu, C. W., and Kuo, C. T. (2012). Modulation of NaCl stress in Capsicum annuum L. seedlings by catechin. Scientia horticulturae, 134, 200-209.
- Zandonadi, D. B., Canellas, L. P., and Façanha, A. R. (2007). Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta, 225(6), 1583-1595. https://doi.org/10.1007/s00425-006-0454-2
- Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annual review of plant biology, 53, 247. https://doi.org/10.1146/annurev.arplant.53.091401.143329
- Zhu, Y., and Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 34(2), 455-472. https://doi.org/10.1007/s13593-013-0194-1
- Zhu, Z., Wei, G., Li, J., Qian, Q., and Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167(3), 527-533. https://doi.org/10.1016/j.plantsci.2004.04.020
|