Abraham, N., Khan, N.M., 2019. A novel focal tversky loss function with improved attention U-Net for lesion segmentation. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), IEEE., 683-687.
Agarap, A.F., 2018. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375.
Agrawal, K., Baweja, Y., Dwivedi, D., Saha, R., Prasad, P., Agrawal, S., Kapoor, S., Chaturvedi, P., Mali, N., Kala, V.U. Dutt, V., 2017. A comparison of class imbalance techniques for real-world landslide predictions. In 2017 international conference on machine learning and data science (MLDS), IEEE., 1-8.
Asadi Nalivan, O., Rahmani, M., Vakili Tajreh, F., Bayat, A., 2024. Prioritization of factors and zoning susceptibility of landslide in Karaj Dam Watershed. Watershed Engineering and Management 16(1), 1-14.
Bernatek-Jakiel, A., 2015. The influence of piping on mid-mountain relief: A case study from the polish bieszczady Mts. (Eastern Carpathians). CJEES, 10(1), 107–120.
Bernatek-Jakiel, A., Poesen, J., 2018. Subsurface erosion by soil piping: significance and research needs. Earth Sci. Rev. 185, 1107-1128.
Brovkina, O. Cienciala, E. Surový, P., Janata, P., 2018. Unmanned Aerial Vehicles (UAV) for assessment of qualitative classification of norway spruce in temperate forest stands. Geo. Spat. Inf. Sci. 21, 12-20.
Chandra, N., Sawant, S., Vaidya, H., 2023. An Efficient U-Net model for improved landslide detection from satellite images. J. Photogramm. Remote Sens. Geoinf. 1-16.
Chen, Y., Chen, W., Janizadeh, S., Bhunia, G.S., Bera, A., Pham, Q.B., Linh, N.T.T., Balogun, A.L., Wang, X., 2021. Deep learning and boosting framework for piping erosion susceptibility modeling: spatial evaluation of agricultural areas in the semi-arid region. Geocarto Int. 1-27.
Dou, J. Chang, K.-T. Chen, S. Yunus, A. Liu, J.-K. Xia, H. Zhu, Z., 2015. Automatic case-based reasoning approach for landslide detection: Integration of object-oriented image analysis and a genetic algorithm. Remote Sens. 7, 4318.
Du, Z. Yang, J. Ou, C. Zhang, T., 2019. Smallholder crop area mapped with a semantic segmentation deep learning method. Remote Sens. 11, 888.
Fernández, T. Pérez, J.L. Cardenal, J. Gómez, J.M. Colomo, C. Delgado, J., 2016. Analysis of landslide evolution affecting olive groves using uav and photogrammetric techniques. Remote Sens. 8, 837.
Ghadi, Y.Y., Rafique, A.A., Al Shloul, T., Alsuhibany, S.A., Jalal, A., Park, J., 2022. Robust object categorization and Scene classification over remote sensing images via features fusion and fully convolutional network. Remote Sens. 14(7), 1550.
Ghorbanzadeh, O., Meena, S.R., Blaschke, T., Aryal, J., 2019. UAV-based landslide detection using deep-learning convolutional neural networks. Remote Sens. 11(17), 2046.
Ghorbanzadeh, O., Rostamzadeh, H., Blaschke, T., Gholaminia, K., Aryal, J., 2018. A new gis-based data mining technique using an adaptive neuro-fuzzy inference system (anfis) and k-fold cross-validation approach for land subsidence susceptibility mapping. Nat. Hazards 94, 497–517.
Higgins, C.G., Coates, D.R., 1990. Groundwater geomorphology: The role of subsurface water in Earth-surface processes and landforms (Vol. 252). Geological Society of America.
Hoai, N.V., Dung, N.M., Ro, S., 2019, July. Sinkhole detection by deep learning and data association. In 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 211-213). IEEE.
Hölbling, D., Füreder, P., Antolini, F., Cigna, F., Casagli, N., Lang, S., 2012. A semi-automated object-based approach for landslide detection validated by persistent scatterer interferometry measures and landslide inventories. Remote Sens. 4, 1310-1336.
Hosseinalizadeh, M., Kariminejad, N., Alinejad, M., 2018. An application of different summary statistics for modelling piping collapses and gully headcuts to evaluate their geomorphological interactions in Golestan Province, Iran. Catena 171, 613-621.
Jones, J.A.A., Crane, F.G., 1984. Pipeflow and pipe erosion in the Maesnant experimental catchment. International Geographical Union Commission on Field Experiments in Geomorphology. Meeting 55-72.
Karantanellis, E., Marinos, V., Vassilakis, E., Hölbling, D., 2021. Evaluation of machine learning algorithms for object-based mapping of landslide zones using UAV data. Geosciences 11(8), 305.
Kariminejad, N., Hosseinalizadeh, M., Pourghasemi, H.R., Tiefenbacher, J.P., 2021. Change detection in piping, gully head forms, and mechanisms. Catena 206, 105550.
Kariminejad, N., Pourghasemi, H.R., Hosseinalizadeh, M., 2022. Analytical techniques for mapping multi-hazard with geo ‑ environmental modeling approaches and UAV images. Sci. Rep. 1-17.
Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Kundu, S., Mostafa, H., Sridhar, S.N., Sundaresan, S., 2020. Attention-based Image Upsampling. arXiv preprint arXiv:2012.09904.
Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z., 2015. Deeply-supervised nets. In Artificial intelligence and statistics (pp. 562-570). PMLR.
Lin, J., Tao, H., Wang, Y., Huang, Z., 2010. Practical application of unmanned aerial vehicles for mountain hazards survey. In Proceedings of the International Conference on Geoinformatics, Beijing, China.
Meena, S.R., Mishra, B.K., Tavakkoli Piralilou, S., 2019. A hybrid spatial multi-criteria evaluation method for mapping landslide susceptible areas in kullu valley, himalayas. Geosciences 9, 156.
Meena, S.R., Soares, L.P., Grohmann, C.H., van Westen, C., Bhuyan, K., Singh, R.P., Catani, F., 2022. Landslide detection in the Himalayas using machine learning algorithms and U-Net. Landslides 19(5), 1209-1229.
Mey, J., Guntu, R.K., Plakias, A., Silva de Almeida, I., Schwanghart, W., 2023. More than one landslide per road kilometer–surveying and modelling mass movements along the Rishikesh-Joshimath (NH-7) highway, Uttarakhand, India. Nat. Hazards Earth Syst. Sci. Discuss. 1-25.
Mezaal, M., Pradhan, B., Rizeei, H., 2018, Improving landslide detection from airborne laser scanning data using optimized dempster–shafer. Remote Sens. 10, 1029.
Miura, H., 2019. Fusion analysis of optical satellite images and digital elevation model for quantifying volume in debris flow disaster. Remote Sens, 11(9), 1096.
Nava, L., Bhuyan, K., Meena, S.R., Monserrat, O., Catani, F., 2022. Rapid mapping of landslides on SAR data by attention U-Net. Remote Sens. 14(6), 1449.
Poesen, J., 2018. Soil erosion in the Anthropocene: Research needs. Earth Surface Processes and Landforms, 43(1).
Pourghasemi, H.R., Yousefi, S., Kornejady, A., Cerdà, A., 2017. Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling. Sci. Total Environ. 609, 764-775.
Qayyum, A., Malik, A., M Saad, N., Mazher, M., 2019. Designing deep CNN models based on sparse coding for aerial imagery: a deep-features reduction approach. European Journal of Remote Sens. 52(1), 221-239.
Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H.R., Feizizadeh, B., 2017. Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion. Geomorphology 298, 118-137.
Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (234-241). Springer, Cham.
Sarro, R., Riquelme, A., García-Davalillo, J.C., Mateos, R.M., Tomás, R., Pastor, J.L., Cano, M., Herrera, G., 2018. Rockfall simulation based on uav photogrammetry data obtained during an emergency declaration: Application at a cultural heritage site. Remote Sens. 10, 1923.
Thakur, M., Kumar, N., Dhiman, R.K., Malik, J.N., 2023. Geological and geotechnical investigations of the Sataun landslide along the Active Sirmauri Tal Fault, Sataun, Northwestern Himalaya, India. Landslides 1-19.
Wang, L., Li, X.A., Zheng, Z.Y., Zheng, H., Ren, Y.B., Chen, W.J., Lei, H.N., 2022. Analysis of the landslide mechanism a under tunnel erosion environment in the south-eastern Loess Plateau in China. Catena 212, 106039.
Watson, C.S., Kargel, J.S., 2019. Tiruwa, B. Uav-derived himalayan topography: Hazard assessments and comparison with global dem products. Drones 3, 18.
Wijaya, I.P., Straka, W., Mergili, M., Ottner, F., Wriessnig, K., Arndt, R., Andreatta, P., Arifianti, Y., Zangerl, C., 2023. Geological characterization and failure analysis of a catastrophic landslide in volcaniclastic soils: the Banjarnegara–Jemblung Landslide (Indonesia). Q. J. Eng. Geol. Hydrogeol. 56(1).
Windrim, L., Bryson, M., McLean, M., Randle, J., 2019. Stone, C. Automated mapping of woody debris over harvested forest plantations using uavs, high-resolution imagery, and machine learning. Remote Sens. 11, 733.
Yang, Z.-h., Lan, H.-x., Gao, X., Li, L.-p., Meng, Y.-s., 2015. Urgent landslide susceptibility assessment in the 2013 lushan earthquake-impacted area, sichuan province, china. Nat. Hazards. 75, 2467-2487.
Zhang, Y., Yue, P., Zhang, G., Guan, T., Lv, M., Zhong, D., 2019. Augmented reality mapping of rock mass discontinuities and rockfall susceptibility based on unmanned aerial vehicle photogrammetry. Remote Sens. 11, 1311.