Aneseyee, A.B., Elias, E., Soromessa, T., Feyisa, G.L., 2020. Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia. Sci. Total Environ. 728, 138776.
Arnold, J.G., Williams, J.R., Srinivaasan, R., King, K.W., 1996. The soil and water assessment tool (SWAT) user? Manual. Temple, TX, PP. 560-572.
Asadi Nalivan, O., Mohseni Saravi, M., Sour, A., Dastranj, A., Taei, S., 2013. Determine the most appropriate experimental method to estimate the SDR using EPM and physical properties basin, case study Watershed Ghurchay, Golestan Province. Irriga. Water Engineer. 3(2), 19-28 (in Persian).
Asghari Srasknrod, S., FizolahPour, M., Mohammadnezhad Arvegh, V., 2013. Study of sediment delivery ratio (SDR) in Jajroad River Watershed. Quantita. Geomorpho. Res. 4(1), 67-78 (in Persian).
Batista, P.V., Laceby, J.P., Davies, J., Carvalho, T.S., Tassinari, D., Silva, M.L., Curi, N., Quinton, J.N., 2021. A framework for testing large-scale distributed soil erosion and sediment delivery models: Dealing with uncertainty in models and the observational data. Environ. Modell. Soft. 137, 104961.
Bayat, R., Moradi, Sh., 2014. A review of research on sediment delivery ratio. Watershed Manage. Soci. Iran 2(5), 27-36 (in Persian).
Behzadfar, A., Khaledi Darvishan, A., Gharagozlu, A., 2017. Increasing the accuracy of predicting sediment yield in watem/sedem model using image fusion algorithm, case study: Darkesh Watershed. J. Water Soil Resour. Conserv. 7(1), 99-112 (in Persian).
Boyce, R.C., 1975. Sediment routing with sediment delivery ratios. In: Present and Prospective Technology for Predicting Sediment Yields and Sources. US Dept. Agric. Publ. ARS-S-40, 61-65.
Cislaghi, A., Bischetti, G.B., 2019. Source areas, connectivity, and delivery rate of sediments in mountainous-forested hillslopes: A probabilistic approach. Sci. Total Environ. 652, 1168-1186.
Damian, G., Năsui, D., Damian, F., Ciurte, D.L., 2014. Erosion assessment modeling using the SATEEC GIS model on the Prislop catchment. Present Environ. Sustain. Develop. 1, 217-224.
Dercon, G., Mabit, L., Hancock, G., Nguyen, M.L., Dornhofer, P., Bacchi, O.O.S., Benmansour, M., Bernard, C., Froehlich, W., Golosov, V.N., Haciyakupoglu, S., Hai, P.S., Klik, A., Li, Y., Lobb, D.A., Onda, Y., Popa, N., Rafiq, M., Ritchie, J.C., Schuller, P., Shakhashiro, A., Wallbrink, P., Walling, D.E., Zapata, F., Zhang, X., 2012. Fallout radionuclide-based techniques for assessing the impact of soil conservation measures on erosion control and soil quality: an overview of the main lessons learnt under an FAO/IAEA Coordinated Research Project. Environ. Radioacti. 107, 78-85.
Dreibrodt, S., Lubos, C., Terhorst, B., Damm, B., Bork, H.R., 2010. Historical soil erosion by water in Germany: Scales and archives, chronology, research perspectives. Quarter. Interna. 222(1-2), 80-95.
Faraji, J., 2018. Etimating spatial variations of sedeiment delivery ratio in Khamsan Representative Watershed using WaTEM/SEDEM. MSc Thesis, 68 pages.
Fernandez, C., Wu, J.Q., McCool D.K., Stockle, C.O., 2003. Estimating water erosion and sediment yield with GIS, RUSLE and SEDD. J. Soil Water Conserv. 58, 128-136.
Ferro, V., Minacapillia, M., 1995. Sediment delivery processes at basin scale. Hydrol. Sci. J. 40(6), 703-718.
Ferro, V., Porto, P., 2000, Sediment Delivery Distributed (SEDD) model. J. Hydrol. Engineer. 5(4), 633-647.
Fu, G., Chen, S., McCool, D.K., 2006. Modeling the impacts of no-till practice on soil erosion and sediment yield with RUSLE, SEDD, and ArcView GIS. Soil Till. Res. 85(1-2), 38-49.
Gaspar, L., Navas, A., Walling, D.E., Machín, J., Arozamena, J.G., 2013. Using 137Cs and 210Pbex to assess soil redistribution on slopes at different temporal scales. Catena 102, 46-54.
Giguet-Covex, C., Arnaud, F., Poulenard, J., Disnar, J.R., Delhon, C., Francus, P., David, F., Enters, D., Rey, P.J., Delannoy, J.J., 2011. Changes in erosion patterns during the Holocene in a currently treeless subalpine catchment inferred from lake sediment geochemistry (Lake Anterne, 2063 m a.s.l., NW French Alps): The role of climate and human activities. The Holocene 21(4), 651-665.
Glymph, L.M., 1954. Study of sediment yields from watersheds. In: Assemblée Générale de Rome 1954 Tome I, IAHS. Publ. No. 36, 173-191.
Gubin, F., Shulin, C., Donald, K.M., 2005. Modeling the impacts of no-till practice on soil erosion and sediment yield with RUSLE, SEDD, and ArcView GIS. Soil Till. Res. 85(1-2), 36-49.
Haan, C.T., Barfield, B.J., Hayes, J.C., 1994. Design hydrology and sedimentology for small catchments. Academic Press, INC., 588 pages.
Hadley, R.F., Mizuyama, T., 1993. Sediment problems: Strategies for monitoring, prediction and control. Wallingford, Oxfordshire, UK, IAHS Publ. 217, 231-240.
Hagos, D.B., 2004. A distributed sediment delivery ratio concept for sediment yield modelling. PhD Thesis, 133 pages.
Hamel, P., Falinski, K., Sharp, R., Auerbach, D.A., Sánchez-Canale, M., Dennedy-Frank, P.J., 2017. Sediment delivery modeling in practice: Comparing the effects of watershed characteristics and data resolution across hydroclimatic regions. Sci, Total Environ. 580, 1381-1388.
Hamel, P., Chaplin-Kramer, R., Sim, S., Mueller, C., 2015. A new approach to modeling the sediment retention service (InVEST 3.0): case study of the Cape Fear Catchment, North Carolina, USA. Sci. Total Environ. 524, 166-177.
Javadi, M., Rahmati, S., Rangavar, A., 2017. Assessment of efficiency and accuracy of USLE and its versions for estimating event base sediment in the semi-arid rangelands, case study: Sanganeh Soil Conservation Research Institute of Mashhad. Watershed Manage. Rese. J. 30(1), 45-53.
Kaffas, K., Pisinaras, V., Al Sayah, M.J., Santopietro, S., Righetti, M., 2021. A USLE-based model with modified LS-factor combined with sediment delivery module for Alpine basins. Catena 207, 105655.
Karthikeya, M., Kumar, S.S., Reddy, S.B., 2018. Geospatial assessment of soil conservation impacts in musi project. Int. J. Res.Technol. 5(2), 83-87.
Khaledi Darvishan, A., Faraji, J., Gholami, L., Khorsand, M., 2021. Spatio-temporal variation of soil erosion in Khamsan representative watershed using RUSLE. Watershed Engin, Manage. 13(3), 534-547 (in Persian).
Kheirkhah, A., Nazarnezhad, H., 2013. Determination of Sediment Delivery Ratio (SDR) based on area-based models (case study: Gojar Watershed). Agricul. Edu. Promo. Res. Organiz. Period 1 (in Persian).
Kinnell, P.I.A., 2006. Alternative approaches for determining the USLE-M slope length factor for grid cells. Soil Sci. Soci. Ameri. J. 69(3), 674-680.
Kinsey-Henderson, A., Prosser, I., Post, D., 2003. SubNet–predicting sources of sediment at sub-catchment scale using SedNet. In: MODSIM Conference, Townsville, 590-595.
Lai, R., Bium, W.H., Valentie, C., Stewart, B.A., 1998. Methods for assessment of soil degradation. Advance. Soil Sci. 558 pages.
Lim, K.J., Sagong, M., Engel, B.A., Tang, Z., Choi, J., Kim, K.S., 2005. GIS-based sediment assessment tool. Catena 64, 61-80.
Lu, H., Moran, C.J., Prosser, I.P., 2006. Modeling sediment delivery ratio over the murray darling basin. Environ. Modell. Soft. 21, 1297-1308.
Lu, H., Moran, C.J., Prosser, I.P., Sivapalan, M., 2004. Modeling sediment delivery ratio based on physical principles. In Pahl-Wostl, C., Schmidt, S., Rizzoli, A.E., Jakeman, A.J., (eds) Complexity and Integrated Resources Management, vol 3. Trans. Second Bienn. Meeti. Internat. Environ. Model. Soft. Soci. Manno, 1117-1122.
Lu, H., Raupach, M.R., McVicar, T.R., Barrett, D.J., 2003. Decomposition of vegetation cover into woody and herbaceous components using AVHRR NDVI time series. Remote Sens. Environ. 86(1), 1-18.
Maner, S.B., 1958. Factors affecting sediment delivery rates in the Red Hills physiographic area. Eos, Trans. Ameri. Geophysi. Union 39(4), 669-675.
Moore, I.D., Burch, G.J., 1986. Modeling erosion and deposition. Topographic Effects. Trans. Americ. Soci. Agricul. Enginee. 29, 1624-1630.
Mutchler, A., Bowie, J., 1975. National engineering hand book, Section 3, Sedimentation.
Mutua, B., Klik, A., 2004. Development of a physically based model for estimation of spatial sediment delivery ratio for large remote catchments. J. Spatial Hydrol. 5(1), 1-15.
Nasri, M., Najafi, A., 2015. Determining mathematical relationship between sediment delivery ratio and Watershed Factors'. Nat. Ecosys. Iran 6(2), 1-12 (in Persian).
Park, Y.S., Kim, J., Kim, N.W., Kim, S.J., Jeon, J.H., Engel, B.A.E., Jang, W., Lim, K.J., 2010. Development of new R, C and SDR modules for the SATEEC GIS system. Comput. Geoscie. 36(6), 726-734.
Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., Blair, R., 1995. Environmental and economic costs of soil erosion and conservation benefits. Science, 267(5201), 1117-1123.
Porto, P., Walling, D.E., 2012. Validating the use of 137Cs and 210Pbex measurements to estimate rates of soil loss from cultivated land in southern Italy. Environ. Radioacti. 106, 47-57.
Rahman, M.R., Shi, Z.H., Chongfa, C., 2009. Soil erosion hazard evaluation-an integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecologi, Modell, 220(13), 1724-1734.
Ramos-Scharron, C.E., MacDonald, L.H., 2007. Development and application of a GIS-based sediment budget model. J. Environ. Manage. 84, 157-172.
Razali, N.M., Wah, Y.B., 2011. Power comparisons of Shapiro-Wilk, Kolmogorov Smirnov, Lilliefors and Anderson-Darling tests. J. Statisti. Model. Analyt. 2, 21-33.
Renfro, G.W., 1975. User of erosion equation and sediment delivery ratio for predicting sediment yield. In present and prospective technology for predicting sediment yield and sources. Agricul. Resour. Servic. ARS, 33-45.
Renfro, R., Waldo, P., 1983. Validations of sediment delivery ratio prediction techniques. Fort Worth TX: US Soil Conservation Service, Southern Reg. Tech. Ctr., 95 pages.
Roehl, J.W., 1962. Sediment source areas, delivery ratios and influencing morphological factors. Inter, Associa. Sci. Hydrol. Commis. Land Erosion.
Sadeghi, H.R., Gholami, L., Khaledi Darvishan, A., 2008. Comparison of sediment delivery ratio estimation methods in Chehelgazi Watershed of Gheshlagh Dam. Water Soil. 22(1), 141-150 (in Persian).
Sánchez, Y., Martínez-Graña, A., Santos-Francés, F., Yenes, M., 2018. Influence of the sediment delivery ratio index on the analysis of silting and break risk in the Plasencia reservoir, central system, Spain. Nat. Hazard. 91(3), 1407-1421.
Sedighi, F., Khaledi Darvishan, A., Zare, M., 2020. Assessment of the slop gradient on the estimated erosion and sediment delivery ratio by using 137Cs in the Khamsan Representative Watershed. Watershed Manage. Res. J. 33(3), 2-19 (in Persian).
Sedighi, F., Khaledi Darvishan, A., Golosov, V., Zare, M.R., Spalevic, V., 2022. Influence of land use on changes of sediment budget components: western Iran case study. Turkish J. Agricul. Forest. 46(6), 838-851.
Sedighi, F., Khaledi Darvishan, A., Zare, M.R., 2021. Effect of watershed geomorphological characteristics on sediment redistribution. Geomorphol. 375, 107559.
Shahoei, S., Abdoulmalki, P., Najmedin, N., Shahoei, S., Tomarian, N., 1992. The relationship between erosion rate and factors during event. 3th Soil Sci. Conference Tehran, 41-56 (in Persian).
Semgalawe, Z.M., Folmer, H., 2000. Household adoption behaviour of improved soil conservation: the case of the North Pare and West Usambara Mountains of Tanzania. Land Use Policy 17, 321-336.
Tenge, A.J., Okoba, B.O., Sterk, G., 2007. Participatory soil and water conservation planning using a financial analysis tool in the West Usambara highlands of Tanzania. Land Degrad. Develop. 18(3), 321-337.
USDA-SCS., 1979. Sediment sources, yields, and delivery ratios. National Engineering Handbook, Section 3, Sedimentation.
USDA-SCS., 1981. Soil conservation service engineering handbook, Section 3, Sedimentation.
Vanoni, V.A., 1975. Sedimentation engineering. Manuals and Reports on Engineering Practice No. 54. American Society of Civil Engineers, New York.
Vigiak, O., Borselli, L., Newham, L.T.H., McInnes, J., Roberts, A.M., 2012. Comparison of conceptual landscape metrics of define hillslope-scale sediment delivery ratio. Geomorphol. 138(1), 74-88.
Walling, D.E., 1983. The sediment delivery problem. J. Hydrol. 65(1-3), 209-237.
Wilkinson, B.H., McElroy, B.J., 2007. The impact of humans on continental erosion and sedimentation. Geo. Soci. America Bull. 119(1-2), 140-156.
Williams, J.R., Brendt, A.D., 1972. Sediment yield computed with the universal equation. American Soci. Civil Engineer. 98(HY12), 2087-2098.
Williams, J.R., Berndt, H.D., 1977. Sediment yield prediction based on watershed hydrology. Trans. ASAE, 20(6), 1100-1104.
Wu, L., Yao, W., Ma, X., 2018. Using the comprehensive governance degree to calibrate a piecewise sediment delivery ratio algorithm for dynamic sediment predictions: a case study in an ecological restoration watershed of northwest China. J. Hydrol. 564, 888-899.