-American Society for Testing of Materials. ASTM D 143-09 (2014). Standard methods of testing small clear specimens of timber.
-American Society for Testing of Materials. ASTM D256 (2018). Standard test methods for determining the Izod pendulum impact strength of plastics.
-Čabalová, I., Zachar, M., Kačík, F. and Tribulová, T., 2019. Impact of Thermal Loading on Selected Chemical and Morphological Properties of Spruce Thermo Wood. BioResources, 14(1), 387-400.
-Corleto, R., Gaff, M., Niemz, P., Sethy, A.K., Todaro, L., Ditommaso, G. and Kamboj, G., 2020. Effect of thermal modification on properties and milling behaviour of African padauk (Pterocarpus soyauxii Taub.) wood. Journal of Materials Research and Technology, 9(4), 9315-9327.
-Delucis, R., Machado, S.F., Missio, A.L. and Gatto, D. A. 2019. Decay resistance of two-step freezing–heat-treated fast-growing eucalyptus wood. Journal of the Indian Academy of Wood Science, 16(2), 139-143.
-Gaff, M., Babiak, M., Kačík, F., Sandberg, D., Turčani, M., Hanzlík, P. and Vondrová, V., 2019. Plasticity properties of thermally modified timber in bending–the effect of chemical changes during modification of European oak and Norway spruce. Composites Part B: Engineering, 165(5), 613-625.
-Gao, H., Sun, M.Y., Cheng, H.Y., Gao, W.L. and Ding, X.L., 2016. Effects of Heat treatment under vacuum on properties of poplar. BioResources, 11(1), 1031-1043.
-Ghorbani, M., Nikkhah Shahmirzadi, A. and Toopa, A., 2020. Effect of densification on the practical properties of chemical and thermal modified poplar wood. Iranian Journal of Wood and Paper Industries, 11(2), 185-197.
-González-Peña, M.M. and Hale, M.D.C., 2007. The Relationship between Mechanical Performance and Chemical Changes in Thermally Modified Wood. In: Proceedings 3rd European Conference on Wood Modification, pp. 169–72.
-González-Peña, M.M., Breese, M.C. and Hill, C.A.S., 2004. Hygroscopicity in Heat Treated Wood: Effect of Extractives. In: Proceedings 1st International Conference on Environmentally- Compatible Forest Products, pp. 105–19.
-Hajihassani, H., Zamani, S.M., Salehi, K. and Ghahri, S., 2022. Evaluation of engineering characteristics of decayed thermo-wood by brown rot fungus. Iranian Journal of Wood and Paper Science Research, 37(4), 306-317.
-Hill, C.A.S., 2006. Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons Ltd, Chichester, UK.
-Kamdem, D.P., Pizzi, A. and Jermannaud, A., 2002. Durability of Heat-Treated Wood. Holz als Roh-und Werkstoff, 60:1–6.
-Kamperidou, V., 2019. The biological durability of thermally-and chemically modified black pine and poplar wood against basidiomycetes and mold action. Forests, 10(12), 1111-1128.
-Kaygin, B., Gunduz, G. and Aydemir, D., 2009. The effect of mass loss on mechanical properties of heat treated Paulownia wood. Wood Research, 54(2), 101-108.
-Kozakiewicz, P., Drożdżek, M., Laskowska, A., Grześkiewicz, M., Bytner, O., Radomski, A. and Zawadzki, J., 2020. Chemical Composition as Factor Affecting the Mechanical Properties of Thermally Modified Black Poplar (Populus nigra L.). BioResources, 15(2), 3915-3929.
-Krause, A., Hof, C. and Militz, H., 2004. Novel Wood Modification Processes for Window and Cladding Products. In: 35th Annual Meeting, International Research Group on Wood Protection, IRG/WP 04–40285.
-Lengowski, E.C., Bonfatti Júnior, E.A., Nisgoski, S., Bolzon de Muñiz, G.I. and Klock, U., 2021. Properties of thermally modified teakwood. Maderas. Ciencia y tecnología, 23(10), 1-16.
-Mburu, F., Dumarc, S., Huber, F., Petrissans, M. and Gérardin, P., 2007. Evaluation of Thermally Modified Grevillea Robusta Heartwood as an Alternative to Shortage of Wood Resource in Kenya. Characterisation of Physicochemical Properties and Improvement of Bio-Resistance, Bioresource Technology, 98(18): 3478–3486.
-Militz, H. and Altgen, M., 2014. "Processes and Properties of Thermally Modified Wood Manufactured in Europe". American Chemical Society in Deterioration and Protection of Sustainable Biomaterials; Schultz, T.et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 269-285.
-Mitchell, P.H., 1988. Irreversible Property Changes of Small Loblolly Pine Specimens Heated in Air, Nitrogen, or Oxygen. Wood and Fiber Science, 20(3): 320–55.
-Navi, P. and Sandberg, D., 2011. Thermo-Hydro-Mechanical Processing of Wood. Engineering Sciences, 360 p.
-The European Standard EN 113. 1997 .Wood preservatives. Test method for determining the protective effectiveness against wood destroying basidiomycetes.
-Tomak, E.D., Ustaomer, D., Yildiz, S. and Pesman, E., 2014. Changes in surface and mechanical properties of heat-treated wood during natural weathering. Measurement, 53(5), 30-39.
-Welzbacher, C.R. and Rapp, A.O., 2004. Determination of the Water Sorption Properties and Preliminary Results from Field Tests above Ground of Thermally Modified Material from Industrial Scale Processes. In: 35th Annual Meeting, International Research Group on Wood Protection, IRG/WP 04–40279.
-Wentzel, M., Fleckenstein, M., Hofmann, T. and Militz, H., 2019. Relation of chemical and mechanical properties of Eucalyptus nitens wood thermally modified in open and closed systems. Wood Material Science & Engineering, 14(3), 165-173.
-Yildiz, S., Tomak, E.D., Yildiz, U.C. and Ustaomer, D., 2013. Effect of artificial weathering on the properties of heat-treated wood. Polymer degradation and stability, 98(8), 1419-1427.
-Zamani, S.M., Hajihassani, R. and Ghahri, S., 2023. Bio-durability and engineering characteristics of heat-treated poplar wood. Drvna Industrija, 74(4), 469-477.