- Chen S.L., Yu H., Luo H.M., Wu Q., Li C.F. A Steinmetz. Conservation and sustainable use of medicinal plants: Problems, progress, and prospects. Chin. Med. 2016; 11.
- He J., Yang B., M. Dong, et al. Crossing the roof of the world: Trade in medicinal plants from Nepal to China. J. Ethnopharmacol., 224. 2018;100-110.
- Shen T., Yu H., Wang Y. Assessing the impacts of climate change and habitat suitability on the distribution and quality of medicinal plant using multiple information integration: Take Gentiana rigescens as an example. Ecol. Indic. 2021.; 123.
- Hamilton A.C. Medicinal plants, conservation and livelihoods. Biodiversity & Conservation. 2004; 13(8), 1477–1517. https://doi.org/10.1023/B:BIOC.0000021333.23413.42
- Molly Meri Robinson Robinson, Xiaorui Zhang. The World Medicines Situation 2011 Traditional Medicines: Global Situation, Issues and Challenges. World Health Organization, Geneva. 1-2. 2011.
- Jean-Marc Fromentin, Marla R. Emery, John Donaldson, Marie-Claire Danner, Agnès Hallosserie, Daniel Kieling. Thematic assessment of the sustainable use of wild species of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES secretariat, Bonn, Germany. 2022. https://doi.org/10.5281/zenodo.6448567
- Smith T., Majid F., Eckl V., Morton Reynolds C. Herbal supplement sales in US increase by record-breaking 17.3% in 2020. Herbal Gram. 2021; 131: 52–65.
- Timoshyna A., Ke Z., Yang Y., Ling X., Leaman D. The invisible trade: Wild plants and you in the time of COVID-19. Traffic International. 2020.
- WHO. WHO global report on traditional and complementary medicine 2019. World Health Organization, Geneva, Switzerland. WHO. 2019.
- Industry Research Biz. Global herbal medicine market size, manufacturers, supply chain, sales channel and clients. IRB. 2020–2028.
- Vasisht K., Sharma N., Karan M. Current perspective in the international trade of medicinal plants material: An update. Current Pharmaceutical Design. 2016; 22(27): 4288–4336. https://doi.org/10.2174/1381612822666160607070736
- Kumar A., Kumar S., Komal R.N., Singh P. Role of traditional ethnobotanical knowledge and indigenous communities in achieving sustainable development goals. Sustainability. 2021; 13(6): 3062. https://doi.org/10.3390/su13063062
- Nord J.H., Nord G.D. MIS research: Journal status and analysis. Information & Management. 1995; 29: 29–42.
- Osinga S., Paudel D., Mouzakitis S., Athanasiadis I. Big data in agriculture: Between opportunity and solution. Agricultural Systems. 2022; 195: 103298. https://doi.org/10.1016/j.agsy.2021.103298
- Rosenblatt P., Lasley P. Perspective on Farm Accident Statistics. The J. Rural Health. 2008; 7: 51–62. https://doi.org/10.1111/j.1748-0361.1991.tb00703.x
- Kamble S., Gunasekaran A., Gawankar S. Achieving Sustainable Performance in a Data-driven Agriculture Supply Chain: A Review for Research and Applications. International Journal of Production Economics. 2019; 219: 179–194. https://doi.org/10.1016/j.ijpe.2019.05.022
- Chavas J.-P., Chambers R., Pope R. Production Economics and Farm Management: A Century of Contributions. American Journal of Agricultural Economics. 2010; 92: 356–375. https://doi.org/10.1093/ajae/aaq004
- Khate A., Sharma B. Medicinal Plant Classification Using Neural Network. 2023; 297–307. https://doi.org/10.1007/978-981-99-4362-3_28
- Pešić M. Development of natural product drugs in a sustainable manner. Brief for United Nations Global Sustainable Development Report 2015. Available at: https://sustainabledevelopment.un.org/content/documents/6544118_Pesic_Development%20of%20natural%20product%20drugs%20in%20a%20%20sustainable%20manner.pdf. (Accessed August 15, 2018).
- Cordell G.A. Sustainable medicines and global health care. Planta Med. 2011; 77(11):1129-38. doi: 10.1055/s-0030-1270731. Epub 2011 Feb 9. PMID: 21308611.
- Applequist W., Brinckmann J.A., Cunningham A., Hart R., Heinrich M., Katerere D., Andel T. Scientists’ Warning on Climate Change and Medicinal Plants. Planta Medica. 2019; 86. https://doi.org/10.1055/a-1041-3406
- He M., Wu C., Li L., Zheng L., Tian T., Jiang L., Li Y., Teng F. Effects of Cavitation Jet Treatment on the Structure and Emulsification Properties of Oxidized Soy Protein Isolate. In Foods. 2021; 10(1). https://doi.org/10.3390/foods10010002
- Fitzgerald M., Heinrich M., Booker A. Medicinal Plant Analysis: A Historical and Regional Discussion of Emergent Complex Techniques. Frontiers in Pharmacology. 2020; 10: 1480. https://doi.org/10.3389/fphar.2019.01480
- Wang P., Yu Z. Species authentication and geographical origin discrimination of herbal medicines by near infrared spectroscopy: A review. Journal of Pharmaceutical Analysis. 2015; 46. https://doi.org/10.1016/j.jpha.2015.04.001
- Sanaeifar A., Li X., He Y., Huang Z., Zhan Z. A data fusion approach on confocal Raman microspectroscopy and electronic nose for quantitative evaluation of pesticide residue in tea. Biosystems Engineering. 2021; 210: 206–222. https://doi.org/https://doi.org/10.1016/j.biosystemseng.2021.08.016
- Azcarate S.M., Ríos-Reina R., Amigo J.M., Goicoechea H.C. Data handling in data fusion: Methodologies and applications. TrAC Trends in Analytical Chemistry. 2021; 143: 116355. https://doi.org/https://doi.org/10.1016/j.trac.2021.116355
- Zhang P., Li T., Yuan Z., Luo C., Wang G., Liu J., Du S. A data-level fusion model for unsupervised attribute selection in multi-source homogeneous data. Information Fusion. 2022;80:87–103. https://doi.org/https://doi.org/10.1016/j.inffus.2021.10.017
- Zhou X., Li X., Zhao B., Chen X., Zhang Q. Discriminant analysis of vegetable oils by thermogravimetric-gas chromatography/mass spectrometry combined with data fusion and chemometrics without sample pretreatment. LWT. 2022; 161: 113403. https://doi.org/https://doi.org/10.1016/j.lwt.2022.113403
- Hariharan U., Kotteswaran R., Pathak N. The Convergence of IoT with Big Data and Cloud Computin. 2020: 1–23. https://doi.org/10.1201/9781003054115-1
- Khan N., Yaqoob I., Hashem I.A.T., Inayat Z., Mahmoud Ali W.K., Alam M., Shiraz M., Gani A. Big Data: Survey, Technologies, Opportunities, and Challenges. Scientific World J. 2014.
- Galicia J.F., Torres F., Martínez-Álvarez Troncoso A. A novel spark-based multi-step forecasting algorithm for big data time series. Inf. Sci. 2018; 467: 800-818.
- Aggarwal C.C. Data Mining: The Textbook. Springer Publishing Company, Incorporated. 2015.
- Veronique Bellon-Maurel, Ludovic Brossard, Frédérick Garcia, Nathalie Mitton, Termier Alexandre. Getting the Most Out of Digital Technology to Contribute to the Transition to. Sustainable Agriculture and Food Systems. Université de Rennes. 2022.
- https://www.n-ix.com/big-data-in-agriculture/
- (talend.com/resources/big-data-agriculture).
- Majumdar J., Naraseeyappa S., Ankalaki S. Analysis of agriculture data using data mining techniques: application of big data. Journal of Big Data. 2017; 4(1): 20. https://doi.org/10.1186/s40537-017-0077-4
- Liao S.-H., Chu P.H., Hsiao pei-yuan. Review: Data mining techniques and applications - A decade review from 2000 to 2011. Expert Systems with Applications: An International J. 2012; 39: 11303–11311. https://doi.org/10.1016/j.eswa.2012.02.063
- Eskandari S., Ravanbakhsh H., Ahangaran Y., Rezapour Z., Pourghasemi H. Effect of climate change on fire regimes in natural resources of northern Iran: investigation of spatiotemporal relationships using regression and data mining models. Natural Hazards. 2023; 119: 1–25. https://doi.org/10.1007/s11069-023-06133-4
- Olson D. L. Data Mining BT - Encyclopedia of Optimization (C. A. Floudas & P. M. Pardalos (eds.). 2009; 600–607. Springer US. https://doi.org/10.1007/978-0-387-74759-0_108
- Attewell P., Monaghan D.B., Kwong D. Data Mining for the Social Sciences (1st ed.). University of California Press. 2015. http://www.jstor.org/stable/10.1525/j.ctt13x1gcg
- Hassani H., Saporta G., Silva E. Data Mining and Official Statistics: The Past, the Present and the Future. Big Data. 2014; 2: 34–43. https://doi.org/10.1089/big.2013.0038
- Mulik S., More A. Future of Agriculture with Data Mining. 2023; 47: 32–39.
- Aishwarya K., Jabbar M.A. Data Mining Analysis for Precision Agriculture: A Comprehensive Survey. ECS Transactions. 2022; 107: 17769–17781. https://doi.org/10.1149/10701.17769ecst
- Bhagawati K., Sen A., Shukla K.K., Bhagawati R. Application and Scope of Data Mining in Agriculture. International Journal of Advanced Engineering Research and Science. 2016; 3(7).
- Milovic B., Radojević V. Application of data mining in agriculture. 2015; 21: 26–34.
- Coleman S. A Practical Guide to Data Mining for Business and Industry. 2014. https://doi.org/10.1002/9781118763704
- Plotnikova V., Dumas M., Fredrik P. Milani. Applying the CRISP-DM data mining process in the financial services industry: Elicitation of adaptation requirements. Data & Knowledge Engineering. 2022; 139; 102013.
- Zhang Y., Wang Y. Recent trends of machine learning applied to multi-source data of medicinal plants. Journal of Pharmaceutical Analysis. 2023. https://doi.org/https://doi.org/10.1016/j.jpha.2023.07.012
- Taoufik N., Boumya W., Achak M., et al. The state of art on the prediction of efficiency and modeling of the processes of pollutants removal based on machine learning. Sci. Total Environ. 2022; 807. https://doi.org/10.1016/j.scitotenv.2021.150554.
- D.V. Nazarenko, P.V. Kharyuk, I.V. Oseledets, I.A. Rodin, O.A. Shpigun. Machine learning for LC–MS medicinal plants identification. Chemom. Intell. Lab. Syst., 156 (2016), pp. 174-180. https://doi.org/10.1016/j.chemolab.2016.06.003
- Meng T., Jing X., Yan Zh., Pedrycz W. A survey on machine learning for data fusion. Inf. Fusion. 2020; 57: 115-129.
- Magnus M., Virte H. Thienpont, L. Smeesters. Combining optical spectroscopy and machine learning to improve food classification. Food Contr. 2021; 130.
- Krishnamoorthy M., Karthikeyan R. Competence of medicinal plant database using data mining algorithms for large biological databases. Measurement: Sensors. 2022;24:100420. https://doi.org/https://doi.org/10.1016/j.measen.2022.100420
- Mucherino A., Papajorgji P., Pardalos P. Data Mining in Agriculture. 2009; 34. https://doi.org/10.1007/978-0-387-88615-2
- Beniwal S., Arora J. Classification and feature selection techniques in data mining. Inter J Engin. Res. and Technol. 2012;1.
- Patel D., Modi R., Sarvakar K. A Comparative Study of Clustering Data Mining: Techniques and Res Challenges. 2014. https://doi.org/10.13140/2.1.1508.7042
- Xu R., Wunsch D. Survey of Clustering Algorithms. Neural Networks, IEEE Transactions On. 2005; 16: 645–678. https://doi.org/10.1109/TNN.2005.845141
- Megala S., Hemalatha D. A Novel Datamining Approach to Determine the Vanished Agricultural Land in Tamilnadu. International Journal of Computer Applications. 2011; 23. https://doi.org/10.5120/2869-3718
- Rainsford C., Roddick J. Database Issues in Knowledge Discovery and Data Mining. Australasian J. of Inf. Systems. 1999; 6. https://doi.org/10.3127/ajis.v6i2.310
- Yavuz E., Şahin M. Semiparametric Regression Models and Applicability in Agriculture. 2022; 5; 160–166. https://doi.org/10.47115/bsagriculture.1077101
- Chen M.-S., Han J., Yu P. Data mining: An overview from a database perspective. Knowledge and Data Engineering, IEEE Transactions On. 1997; 8: 866–883. https://doi.org/10.1109/69.553155
- Ait Issad H., Aoudjit R., Rodrigues J.J.P.C. A comprehensive review of Data Mining techniques in smart agriculture. Engineering in Agriculture, Environment and Food. 2019; 12(4): 511–525. https://doi.org/https://doi.org/10.1016/j.eaef.2019.11.003.
|