Alizadeh, M.J., Kavianpour, M.R., Kisi, O., Nourani, V., 2017. A new approach for simulating and forecasting the rainfall-runoff process within the next two months. J. H. 548, 588-597.
Amirat, Y., Benbouzid, M.E.H., Wang, T., Bacha, K., Feld, G.J.A.A., 2018. EEMD-based notch filter for induction machine bearing faults detection. Applied Acoustics, 133, 202-209.
Ashour, M.A., ElZahaby, S.A., Abdalla, M.I., 2016. Backpropagation neural network approach for mean temperature prediction. Inter. J. Recent Res. Appli. Studies 29, 12-18.
Behmanesh, J., Azad Talatappeh, N., Montaseri, M., Rezayi, H., Khalili, K., 2015. Climate change impact on reference evapotranspiration, precipitation deficit and vapor pressure deficit in Urmia. Water Soil Sci. 25(2), 79-91.
Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv Preprint 1412, 3555.
Deng, L., Yu, D., 2014. Deep learning: methods and applications. Found. Trends Signal Process. 7(3-4), 197-387.
Esfandiari, D.F., Hosseni, S.A., Azadi, M.M., Hejazizadeh, Z., 2011. Prediction of monthly average temperature through Artificial Neural Network Multilayer Perceptron (MLP). Water 13(9), 1294 (in Persian).
Feng, H., Liu, Y., 2015. Combined effects of precipitation and air temperature on soil moisture in different land covers in a humid basin. J. H. 531, 1129-1140. Felix, A.G., Jürgen, S., Fred, C., 2000. Learning to forget: continual prediction with LSTM. Neural Comput. 12(10), 2451-2471.
Ghorbani, M., Shiri, J., Kazemi, H., 2010. Estimation of maximum, mean and minimum air temperature in Tabriz city using artificial intelligent methods. Water Soil Sci. 20(3), 87-104 (in Persian).
Graves, A., Schmidhuber, J., 2005. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5-6), 602-610.
Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., Schmidhuber, J., 2008. A novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. 31(5), 855-868.
Gers, F., Schmidhuber, J., Cummins, F., 2000. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 12:2451-71.
Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9(8), 1735-1780.
IPCC, 2001. Climate change: the scientific basis, contribution of working group to the third assessment report of the intergovernmental panell on climate change. Cambridge Univ. Perss, New York, NY, USA, 881 pages.
Karen, A., Latinez, S., 2010. Comparison of adaptive methods using Multivariate Regression Splines (MARS) and Artificial Neural Networks Backpropagation (ANNB) for the forecast of rain and temperatures in the Mantaro River Basin. Hydrol. Days 58-68.
Karthika, B.S., Deka, P.C., 2016. Modeling of air temperature using ANFIS by wavelet refined parameters. Int. J. Intell. Syst. Appl. 8(1), 25.
Kisi, O., Cimen, M., 2011. A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J. Hydrol. 399(1-2), 132-140.
Lashanizand, M., Payamani, K., Ahmadi, S., Veyskarami, I., 2014. Ecological climate zonation of Iran. Watershed Eng. Manage. 6(2), 175-189 (in Persian).
Li, X., Wu, X., 2015. Constructing long short-term memory based deep recurrent neural networks for large vocabulary speech recognition. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 4520-4524 pages.
Mirzania, E., Malek Ahmadi, H., Shahmohammadi, Y., Ebrahim Zadeh, A., 2021. Impact of wavelet on accuracy of estimated models in rainfall-runoff modeling, case study: Sufi Chay. Water Soil Manage. Modell. 1(3), 67-79.
Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.M., 1996. Wavelet toolbox for use with matlab. The Mathworks, Inc. Natick, Massachusetts, USA.
Omidi Ghaleh Mohammadi, S., Mazidi, A., Karemi, S., Hassani sadi, N., Omidi Ghaleh Mohammadi, M., Kharajpor, H., 2022. Estimating daily maximum temperatures using artificial networks, case study: Kerman. Territory 19(73), 109-120 (in Persian).
Peixoto, J.P., Oort, A.H., Lorenz, E.N., 1992. Physics of climate, Vol. 520. New York: American Institute of Physics.
Roushangar, K., Shahnazi, S., 2019. Evaluating the performance of data-driven methods for prediction of total sediment load in gravel-bed rivers. Iran. J. Soil Water Res. 50(6), 1467-1477.
Saghebian, S., 2020. Temporal and spatial Flow discharge prediction using integrated artificial intelligence and pre and post-processing time series methods. Iran. J. Irrigation Drainage 14(4), 1137-1151(in Persian).
Sak, H., Senior, A.W., Beaufays, F., 2014. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. Interspeech 338-342 pages.
Sharifi, S.S., Rezaverdinejad, V., Nourani, V., 2016. Estimation of daily global solar radiation using wavelet regression, ANN, GEP and empirical models: a comparative study of selected temperature-based approaches. J. Atmos. Sol. Terr. Phys. 149, 131-145.
Wu, Z., Huang, N.E., 2004. A study of the characteristics of white noise using the empirical mode decomposition method. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 460(2046), 1597-1611.
Yadav, B., Eliza, K., 2017. A hybrid wavelet-support vector machine model for prediction of lake water level fluctuations using hydro-meteorological data. Measurement 103, 294-301.
Zhang, Z., Dong, Y., 2020. Temperature forecasting via convolutional recurrent neural networks based on time-series data. Complexity, 2020, 3536572.