Ahmadi Momqani, Y., Khorasani, N.A., Rafiei, Gh. 2010. Investigating polluting sources and water quality of Tajen river. J. Nat. Environ. 63(4), 317-327 (in Persian).
Amiri, A., Amiri, S. 2015. Prediction of river quality parameters using artificial neural network. International Conference on New Achievements in Civil Engineering, Architecture, Environment and Urban Management, Tehran, 13 pages (in Persian).
Arya, A.N., Kardan, N., Ghordoyee, S. 2021. Developing the artificial neural network–evolutionary algorithms hybrid models (ANN–EA) to predict the daily evaporation from dam reservoirs. Eng. Comput. 1-19.
Bagheri, M., Mansouri, P., Talebi, M.A., Karmi, M., Farzan, M. 2018. Comparison of water quality parameters of Paruz and Sabzkoh Rivers (Chaharmahal and Bakhtiari Provinces) with cold water fish farming standards. Aquac. Dev. J. 12(3), 1-14 (in Persian).
Banadkooki, F.B., Ehteram, M., Panahi, F., Sammen, S.S., Othman, F.B., Ahmed, E.S. 2020. Estimation of Total Dissolved Solids (TDS) using new hybrid machine learning models. J. Hydrol. 587, 124989.
Esmaeili-Gisavandani, H., Lotfirad, M., Sofla, M.S.D., Ashrafzadeh, A. 2021. Improving the performance of rainfall-runoff models using the gene expression programming approach. J. Water Climate Change 12(7), 3308-3329.
Ebadi, A.G., Zare, S. 2005. Measurement of organophosphorus pesticide in fish from the Tajan River. Pakistan J. Biolog. Sci. 8(10), 1463-1465
Fethian H., Hormozinejad A. 2011. Prediction of quantitative and qualitative flow parameters in the Karun River (Malathani-Farsiat Basin) using artificial neural networks. J. Wet. Ecobio. 2(8), 29-43 (in Persian).
Gandomi, A.H., Alavi, A.H., Ting, T.O., Yang, X.S. 2013. Intelligent modeling and prediction of elastic modulus of concrete strength via gene expression programming. In Advances in Swarm Intelligence: Proceedings of 4th International Conference, ICSI 2013, Harbin, China, Part I4 Springer Berlin Heidelberg.
Gazzaz, N.M., Yusoff, M.K., Aris, A.Z., Juahir, H., Ramli, M.F. 2012. Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors. Marine Pollu. Bulletin 64(11), 2409-2420
Ghavidel, S., Montaseri, M. 2014. Application of different data-driven methods for the prediction of total dissolved solids in the Zarinehroud Basin. Stoch. Environ. Res. Risk Assess. 28, 2101-2118.
Jamei, M., Ahmadianfar, I., Chu, X., Yaseen, Z.M. 2020. Prediction of surface water total dissolved solids using hybridized wavelet-multigene genetic programming: new approach. J. Hydrol. 589, 125335.
Mohammadpour, R., Shaharuddin, S., Chang, C.K., Zakaria, N.A., Ab-Ghani, A., Chan, N.W. 2015. Prediction of water quality index in constructed wetlands using support vector machine. Environ. Sci. Pollut. Res. 22(8), 6208-6219.
Najafzadeh, M., Ghaemi, A. 2019. Prediction of the five-day biochemical oxygen demand and chemical oxygen demand in natural streams using machine learning methods. Environ. Monit. Assess. 191, 1-21.
Nowzari, H., Nematullahi, L. 2021. Investigating the qualitative characteristics of underground water sources that supply drinking water in Abade City. Hum. Environ. 19(1), 23-33 (in Persian).
Peipolzadeh, S., Mastouri, R., Shahkarmi, N. 2022. Modeling and prediction of dissolved solids in Tajen River using an artificial intelligence-based approach based on pre-processing algorithms. Iran Water Res. 16(1), 25-37 (in Persian).
Rezaie-Balf, M., Attar, N.F., Mohammadzadeh, A., Murti, M.A., Ahmed, A.N., Fai, C.M., El-Shafie, A. 2020. Physicochemical parameters data assimilation for efficient improvement of water quality index prediction: Comparative assessment of a noise suppression hybridization approach. J. Clean. Prod. 271, 122576.
Saeedi M., Karbassi, A.R., Nabi Bidhendi, Gh.R., Mehrdadi, N. 2006. Impact of anthropogenic activities on heavy metals pollution in Tajan River water, Mazandaran Province. J. Environ. Stu. 32(40), 41-50.
Safar Talory, M., Dehghani, A. 2012. Predicting changes in water quality of Shast Kalateh River using artificial neural network. Proccedings of National Conference on Water Flow and Pollution, Tehran (in Persian).
Sharafati, A., Asadollah, S.B.H.S., Hosseinzadeh, M. 2020. The potential of new ensemble machine learning models for effluent quality parameters prediction and related uncertainty. Process Saf. Environ. Prot. 140, 68-78.
Shiri, N., Shiri, J., Yaseen, Z.M., Kim, S., Chung, I.M., Nourani, V., Zounemat-Kermani, M. 2021. Development of artificial intelligence models for well groundwater quality simulation: Different modeling scenarios. Public Library of Science (PLOS) One, 16(5), e0251510.
Sun, K., Rajabtabar, M., Samadi, S., Rezaie-Balf, M., Ghaemi, A., ShamshirBand, S., Mosavi, A. 2021. An integrated machine learning, noise suppression, and population-based algorithm to improve total dissolved solids prediction. Eng. Appl. Comput. Fluid Mech. 15(1), 251-271.
Wu, Z., Huang, N.E. 2009. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advan. Adap. Ddata Analy. 1(01), 1-41.
Mokhtarzad, M., Eskandari, F., Vanjani, N.J., Arabasadi, A. 2017. Drought forecasting by ANN, ANFIS, and SVM and comparison of the models. Environ. Earth Sci. 76(21), 1-10.
Yang, H.F., Chen, Y.P.P. 2019. Hybrid deep learning and empirical mode decomposition model for time series applications. Expert Syst Appl. 120, 128-138.
Zhang, J., Yan, R., Gao, R.X., Feng, Z. 2010. Performance enhancement of ensemble empirical mode decomposition. Mech. Syst. Signal Process. 24(7), 2104-2123.