Aghdam, I.N., Varzandeh, M.H.M., Pradhan, B. 2016. Landslide susceptibility mapping using an ensemble statistical index (Wi) and Adaptive Neuro-Fuzzy Inference System (ANFIS) model at Alborz Mountains (Iran). Environ. Earth Sci. 75(7), 553-563.
Amir Ahmadi, A., Naemi Tabar, M., Gholkar, B. 2017. Prioritize and zoning factors affecting the landslide model entropy, case study: Bajgiran, Ghochan. Hydrogeomorphol. 3(11), 105-125 (In Persian).
Arulbalaji, P., Padmalal, D., Sreelash, K. 2019. GIS and AHP techniques based delineation of groundwater potential zones: a case study from southern Western Ghats, India. J. Sci. Rep. 9, 2082.
Bui, T.D., Shahabi, H., Shirzadi, A., Chapi, K., Alizadeh, M., Chen, W., Mohammadi, A., Ahmad, B., Panahi, M., Hong, H., Tian, Y. 2018. Landslide detection and susceptibility mapping by AIRSAR data using support vector machine and index of entropy models in Cameron Highlands, Malaysia. Remote Sens. 10(1527), 1-32.
Chen, W., Zhang, S., Li, R., Shahabi, H. 2018. Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve bayes tree for landslide susceptibility modeling. Sci. Total Environ. 644, 1006-1018.
Deng, F., Deng, Z., Lv, D., Wang, D., Duan, H., Xing, Z. 2016. Application of remote sensing and GIS analysis in groundwater potential estimation in west Liaoning Province, China. J. Eng. Res. 43, 1–17.
Hong, H., Shahabi, H., Shirzadi, A., Chen, W., Chapi, K., Ahmad, B., Shadman, M., Yari, A., Tian, Y., Bui, D. 2019. Landslide susceptibility assessment at the Wuning area, China: a comparison between multi‑criteria decision making, bivariate statistical and machine learning methods. Nat. Hazards 96, 173-212.
Kadavi, P., Lee, C.W., Lee, S. 2018. Application of ensemble-based machine learning models to landslide susceptibility mapping. Remote Sens. 10(8), 1252.
Kerekes, A.H., Poszet, S.L., Gal, A. 2018. Landslide susceptibility assessment using the maximum entropy model in a sector of the Cluj–Napoca Municipality, Romania. Rev. Geomorfol. 20, 130-146.
Koehorst, B.A.N., Kjekstad, O., Patel, D., Lubkowski, Z., Knoeff, J.G., Akkerman, G.J. 2005. Workpackage 6 determination of socio-economic impact of natural disasters. Assessing socioeconomic Impact in Europe, 173 pages.
Kornejady, A., Ownegh, M., Bahremand, A. 2017. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena 152, 144-162.
Miller. J.R., Ritter, D.F., Kochel, R.C. 1990. Morphometric assessment of lithologic controls on drainage basin evolution in the Crawford Upland, south-central Indiana. Am. J. Sci. 290, 569-599.
Mirzaei, G., Soltani, A., Soltani, M., Darabi, M. 2018. An integrated data-mining and multi-criteria decision-making approach for hazard-based object ranking with a focus on landslides and floods. Environ. Earth Sci. 77, 581.
Muniraj, K., Jesudhas, C.J., Chinnasamy, A. 2019. Delineating the groundwater potential zone in Tirunelveli Taluk, South Tamil Nadu, India, using remote sensing, Geographical Information System (GIS) and Analytic Hierarchy Process (AHP) techniques. Proceedings of the National Academy of Sciences, India Section A: Physical Sci.
Nachappa, T.G., Tavakkoli, S., Gholamnia, Kh. Ghorbanzadeh, O., Rahmati, O., Blaschke, T. 2020. Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. J. Hydrol. 590, 125275.
Naghibi, S.A., Moghaddam, D., Kalantari, B., Pradhan, B., Kisi, O. 2017. A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping. J. Hydrol. 548, 471-483.
Nguyen, V.T., Tran, T.H., Ha, N.A., Ngo, V.L., Nadhir, A.A., Tran, V.P., Nuyen, D.H., Malek, M.A., Amini, A., Prakash, I., Ho, L.S., Pham, B.T. 2019. GIS based novel hybrid computational intelligence models for mapping landslide susceptibility: a case study at Da Lat City, Vietnam. Sustainability 11, 7118.
Pandey, V.K., Pourghasemi, H.R., Sharma, M.C. 2018. Landslide susceptibility mapping using maximum entropy and support vector machine models along the Highway Corridor, Garhwal Himalaya. Geocarto Int. 35(2), 168-187.
Park, N.W. 2015. Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets. Environ. Earth Sci. 73, 937-949.
Phillips, S.J., Anderson, R.P., Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231-259.
Pourghasemi, H.R., Rossi, M. 2016. Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods. Theor. Appl. Climatol. 1-25.
Salarian, T., Zare, M., Jouri, M.H., Miarrostami, S., Mahmoudi, M. 2014. Evaluation of shallow landslides hazard using artificial neural network of multi-layer perceptron method in Subalpine Grassland, case study: Glandrood Watershed Mazandaran. Int. J. Agric. Sci. 7(11), 795-804.
Teimouri, M., Asadi Naivan, O. 2020. Susceptibility zoning and prioritization of the factors affecting landslide using MaxEnt, geographic information system and remote sensing models, case study: Lorestan Province. Hydrogeomorpholoy 6(21), 155-179.
Toll, D.G. 1996. Artificial intelligence applications in geotechnical engineering. Electron. J. Geotech. Eng. 27 pages.
Youssef, A.M., Pourghasemi, H.R., Pourtaghi, Z., Al-Katheeri, M.M. 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 13(5), 839-856.
Zhang, T., Han, L., Han, J., Li, X., Zhang, H., Wang, H. 2019. Assessment of landslide susceptibility using integrated ensemble fractal dimension with kernel logistic regression model. Entropy 21(218), 1-23.