Akay, H., 2021. Spatial modelling of snow avalanche susceptibility using hybrid and ensemble machine learning techniques. Catena 206, 105524.
Blahut, J., Klimes, J., Balek, J., Hajek, P., Cerven, L., Lysak, J., 2017. Snow avalanche hazard of the Krkonose National Park Czech Republic. J. Maps 13 (2), 86-90.
Bühler, Y., Christen, M., Kowalski, J., Bartelt, P., 2011. Sensitivity of snow avalanche simulations to digital elevation model quality and resolution. Annals Glaciol. 52(58), 72-80.
Conway, H., Wilbour, C., 1999. Evolution of snow slope stability during storms. Cold Regi. Sci. Technol. 30(1-3), 67-77.
Christen, M., Bartelt, P., Gruber, U., 2002. AVAL-1D: An avalanche dynamics program for the practice. In International Congress Interpraevent, 715-725.
Christen, M., Kowalski, J., Bartelt, P., 2010. RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regi. Sci. Technol. 63 (1-2), 1-14.
Choubin, B., Borji, M., Mosavi, A., Sajedi-Hosseini, F., Singh, V.P., Shamshirband, S., 2019. Snow avalanche hazard prediction using machine learning methods. J. Hydrol. 577, 123929.
Ceaglio, E., Mitterer, C., Maggioni, M., Ferraris, S., Segor, V., Freppaz, M., 2017. The role of soil volumetric liquid water content during snow gliding processes. Cold Regi. Sci. Technol. 136, 17-29.
Eglit, M., Yakubenko, A., 2014. Numerical modeling of slope flows entraining bottom material. Cold Regi. Sci. Technol. 108, 139-148.
Eglit, M., Yakubenko, A., Zayko, J., 2020. A review of Russian snow avalanche models from analytical solutions to novel 3D models. Geosci. 10 (2), 77.
Feistl, T., 2015. Vegetation effects on avalanche dynamics. phD. dissertation, Technische Universität München, 139 pages.
Fischer, J.T., Kowalski, J., Pudasaini, S.P., 2012. Topographic curvature effects in applied avalanche modeling. Cold Regi. Sci. Technol. 74, 21-30.
Fischer, J.T., 2013. A novel approach to evaluate and compare computational snow avalanche simulation. Nat. Hazards Earth Sys. Sci. 13(6), 1655-1667.
Gądek, B., Kaczka, R.J., Rączkowska, Z., Rojan, E., Casteller, A., Bebi, P., 2017. Snow avalanche activity in Zleb Zandarmerii in a time of climate change (Tatra Mts., Poland). Catena 158, 201-212.
Granig, M., Oberndorfer, S., 2008. Developement and calibration of the dense and powder snow avalanche model SamosAT. Interpraev. Dornbirn 493-504.
Granig, M., Sampl, P., Tollinger, C., Jörg, P., 2009. Experiences in avalanche assessment with the powder snow avalanche model SamosAT. In International Snow Science Workshop Proceedings, Davos, Switzerland, 514-518
Graveline, M.H., Germain, D., 2016. Ice-block fall and snow avalanche hazards in northern Gaspésie (eastern Canada): Triggering weather scenarios and process interactions. Cold Regi. Sci. Technol. 123, 81-90.
Gruber, U., Bartelt, P., 2007. Snow avalanche hazard modelling of large areas using shallow water numerical methods and GIS. Environ. Modell. Sof. 22(10), 1472-1481.
Gilany, N., Iqbal, J., 2019. Simulation of glacial avalanche hazards in Shyok Basin of upper Indus. Sci. Reports 9(1), 1-14.
Gürer, I., Tunçel, H., Yavas, O.M., Erenbilge, T., Sayin, A., 1995. Snow avalanche incidents in north-western Anatolia, Turkey during December 1992. Nat. Hazards 11 (1), 1-16.
Gauthier, F., Germain, D., Hétu, B., 2017. Logistic models as a forecasting tool for snow avalanches in a cold maritime climate: northern Gaspésie, Québec, Canada. Nat. Hazards 89(1), 201-232.
Hao, J.S., Huang, F.R., Liu, Y., Amobichukwu, C.A., Li, L.H., 2018. Avalanche activity and characteristics of its triggering factors in the western Tianshan Mountains, China. J. Mount. Sci. 15(7), 1397-1411.
Hirashima, H., Nishimura, K., Yamaguchi, S., Sato, A., Lehning, M., 2008. Avalanche forecasting in a heavy snowfall area using the snowpack model. Cold Regi. Sci. Technol. 51(2-3), 191-203.
Joshi, J.C., Srivastava, S., 2014. A hidden markov model for avalanche forecasting on Chowkibal-Tangdhar road axis in Indian Himalayas. J. Earth Sys. Sci. 123(8), 1771-1779.
Kern, A.N., Addison, P., Oommen, T., Salazar, S.E., Coffman, R.A., 2017. Machine learning based predictive modelling of debris flow probability following wildfire in the intermountain Western United States. Mathemati. Geosci. 49, 717-735.
Kumar, S., Snehmani, P.K., Srivastava, A., Singh, M.K., 2016. Fuzzy–frequency ratio model for avalanche susceptibility mapping. Int. J. Digital Earth 9(12), 1168-1184.
Koçyiğit, Ö., Tekin, E., Arslan, G., 2016. Avalanche research studies at bozdağ. Disaster Sci. Engineer. 2(2), 40-45.
Kumar, S., Srivastava, P.K., 2017. GIS-based MCDA–AHP modelling for avalanche susceptibility mapping of Nubra valley region, Indian Himalaya. Geocarto Int. 32(11), 1254-1267.
Kumar, S., Srivastava, P.K., 2018. Geospatial modelling and mapping of snow avalanche susceptibility. J. Indian Soci. Remote Sens. 46(1), 109-119.
Kumar, S., Srivastava, P.K., Bhatiya, S., 2019. Geospatial probabilistic modelling for release area mapping of snow avalanches. Cold Regi. Sci. Technol. 165, 102813.
Kurt, T., 2018. Assessment of avalanche hazard situation in Turkey during years 2010s. Nat. Hazards Earth Sys. Sci. Discussions, 1-27.
Kulikovskii, A., Sveshnikova, E., 1977. A model for simulation of a powder snow avalanche. Mater. Glyatsiologicheskikh Issled. (Data Glaciol. Stud.) 53, 108-112 (in Russian with English Summary).
Lushchik, V.G., Pavel’Ev, A.A., Yakubenko, A.E., 1978. Three-parameter model of shear turbulence. Fluid Dyn. 13 (3), 350-360.
Mahdavi, M., 2016. Applied Hydrology 1. University of Tehran Press, 342 pages (in Persian).
Maggioni, M., 2005. Avalanche release areas and their influence on uncertainty in avalanche hazard mapping. PhD Thesis, 146 pages.
Mokarram, M., Darvishi, A., Negahban, S., 2017. The relation between morphometric characteristics of watersheds and erodibility at different altitude levels using Topographic Position Index (TPI), case study: Nazloochaei Watershed. J. Geographi. Data (SEPEHR), 26(1), 131-142 (in Persian).
Mosavi, A., Shirzadi, A., Choubin, B., Taromideh, F., Hosseini, F.S., Borji, M., Shahabi, H., Salvati, A. Dineva, A.A., 2020. Towards an ensemble machine learning model of random subspace based functional tree classifier for snow avalanche susceptibility mapping. IEEE Access, 8, 145968-145983.
Mott, R., Faure, F., Lehning, M., Henning, L., Hynek, B., Michlmayer, G., Prokop, A., Schöner, W., 2008. Simulation of seasonal snow-cover distribution for glacierized sites on Sonnblick, Austria, with the Alpine3D model. Annals Glaciol. 49, 155-160.
Meister, R., 1989. Influence of strong winds on snow distribution and avalanche activity. Annals Glaciol. 13, 195-201.
Oller, P., Janeras, M., de Buen, H., Arnó, G., Christen, M., García, C., Martínez, P., 2010. Using AVAL-1D to simulate avalanches in the eastern Pyrenees. Cold Regi. Sci. Technol. 64(2), 190-198.
Peitzsch, E.H., Hendrikx, J., Fagre, D.B., Reardon, B., 2012. Examining spring wet slab and glide avalanche occurrence along the Going-to-the-Sun Road corridor, Glacier National Park, Montana, USA. Cold Regi. Sci. Technol. 78, 73-81.
Rooming, J.M., 2004. March wet avalanche prediction at Bridger Bowl ski area, Montana. PhD thesis, Montana State University-Bozeman, College of Letters and Science. p 46-60.
RAMMS. 2017. Avalanche user manual v1.7. Swiss Federal Institute for Forest, Snow and Landscape Research.
Salm, B., Burkard, A., Gubler, H.U., 1990. Calculating flowing avalanches: a guide for practitioners with examples. Federal Institute for Snow and Avalanche Research, Weissfluhjoch / Davos, 44 pages.
Sampl, P., Zwinger, T., 2004. Avalanche simulation with SAMOS. Annals Glaciol. 38, 393-398.
Sardar, T., Xu, A., Raziq, A., 2017. Snow avalanche susceptibility based assessment of release zones over complex terrain of siachen glacier applying ramms and dsr as active macroclimatic factor. Procedia Computer Sci. 107, 427-435.
Samadi M., Jalali, S., Kornejadi, A., Samadi Gheshlaghchaee, M., 2016. Investigation of morphometric indexes with GIS in Chel-Chay Watershed, Golestan Province. Geospa. Engineer. J. 7(4), 37-48.
Sethya, K.K., Pandey, P., Chattoraj, S., Manickam, S., 2018. Mapping, modelling and simulation of snow avalanche in Alaknanda Valley, Central Himalaya: Hazard Assessment. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 5150-5153.
Singh, V., Thakur, P.K., Garg, V., Aggarwal, S.P., 2018. Assessment of snow avalanche susceptibility of road network-a case study of Alaknanda Basin. Int. Archives Photogram. Remote Sens. Spatial Inf. Sci. 425, 461-468.
Schweizer, J., Bruce Jamieson, J., Schneebeli, M., 2003. Snow avalanche formation. Reviews Geophy. 41(4), 1016.
Schweizer, J., Mitterer, C., Techel, F., Stoffel, A., Reuter, B., 2018. Quantifying the obvious: the avalanche danger level. In Proceedings International Snow Science Workshops, 1052-1058.
Schmidtner, K., Bartelt, P., Fischer, J.T., Sailer, R., Granig, M., Sampl, P., Bühler, Y., 2018. Comparison of powder snow avalanche simulation models (RAMMS and SamosAT) based on reference events in Switzerland. In International Snow Science Workshop Proceedings, 740-745.
Turchaninova, A.S., 2013. Application of empirical calculations and dynamics models for snow avalanche hazard assessment in Russia. In International Snow Science Workshop: Grenoble Chamonix-Mont-Blanc France, 7-11.
Tunçel, H., 1990. Avalanches as Natural Hazard and Avalanches in Turkey. Cografya Aras¸tırmaları Dergisi 1(2), 71-98.
Wastl M., Stötter, J., Kleindienst, H., 2011. Avalanche risk assessment for mountain roads: a case study from Iceland. Nat. Hazards, 56(2), 465-480.
Wilbur, C., Mears, A., Margreth, S., Burak, S., 2014. Avalanche dynamics model RAMMS applied in two north american climates. International Snow Science Workshop, Banff, Alberta, Canada.
Yariyan, P., Avand, M., Abbaspour, R.A., Karami, M., Tiefenbacher, J.P., 2020. GIS-based spatial modelling of snow avalanches using four novel ensemble models. Sci. Total Environ. 745, 141008.
Zarei Bidaki, R., 2009. Investigation of avalanche conditions using climatic factors, geomorphology and snow cover. PhD Thesis, 135 pages (in Persian).
Zwinger, T., Kluwick, A., Sampl, P., 2003. Numerical simulation of dry-snow avalanche flow over natural terrain. In Dynamic response of granular and porous materials under large and catastrophic deformations. Springer, Berlin, Heidelberg, 161-194