– Aalipour, B., Moazi, A.A., Nowrozi, M. and Khadim Al-Rasul, A., 2015. The effect of biomass type and pyrolysis temperature on some chemical and physical properties of biochar. Iran Water and Soil Research, 49(3): 537-547 (In Persian with English summary). https://doi.org/
10.30495/JEST.2022.64466.5571
– Ahmad, Z., Mosa, A., Zhan, L., and Gao, B., 2021. Biochar modulates mineral nitrogen dynamics in soil and terrestrial ecosystems: A critical review. Chemosphere, Elsevier, 278, 130378. https://doi.org/10.1016/j.chemosphere.2021.130378
– Alihouri, M., 2017. Feasibility measurement of salt water consumption by determining the water salinity production function in Ziziphus Spina-Christi species. Engineering and Irrigation Sciences (Scientific Journal of Agriculture) 41(3): 159-170 (In Persian). https://doi.org/10.22055/jise.2017.20945.1501
– Azarnivand, H., Qurbani, M. and Junidi Jafari, H., 2016. Investigating the effect of sodium chloride on the germination of two pasture species Artemisia scoparia, Artemisia vulgaris. Iranian Journal of Range and Desert Research, 14(3): 352-358 (In Persian with English summary). https://ijrdr.areeo.ac.ir/article_105644_8e878a3edc305043549856ffe1a82333.pdf
– Biederman, L.A., and Harpole, W.S., 2013. Biochar and its effects on plant productivity and nutrient cycling: a meta‐analysis. GCB bioenergy, 5(2): 202-214. https://doi.org/10.1111/gcbb.12037
– Chaudhry, U.K., Shahzad, S., Naqqash, M.N., Saboor, A., Yaqoob, S., Abbas, M.S. and Saeed, F., 2016. Integration of biochar and chemical fertilizer to enhance quality of soil and wheat crop (Triticum aestivum L.). Journal of Biodiversity and Environmental Sciences, 9(1): 348-358. http://dx.doi.org/10.7287/peerj.preprints.1631v1
– Chirakkara, R.A. and Reddy, K.R., 2015. Plant species identification for phytoremediation of mixed contaminated soils. Journal of Hazardous, Toxic, and Radioactive Waste, 19(4): 04015004. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000282
– Chrysargyris, A., Prasad, M., Kavanagh, A. and Tzortzakis, N., 2020. Biochar type, ratio, and nutrient levels in growing media affects seedling production and plant performance. Agronomy, 10(9): 1421. https://doi.org/10.3390/agronomy10091421
– Danaie, A.R., Razmjouiee, D., Yousefi, S.H. and Zolfaghari, S., 2017. Determination of the potential habitat of Calligonum Comosum in rangelands using geographic information systems and hierarchical analysis (Case study: Hood area in Khuzestan province, Ahwaz city). Iranian Journal of Range and Desert Research. 24(2): 455-463 (In Persian with English summary). https://doi.org/10.22092/ijrdr.2017.111908
– Hossain, M.Z., Bahar, M.M., Sarkar, B., Donne, S.W., Ok, Y.S., Palansooriya, K.N. and Bolan, N., 2020. Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2(4): 379-420. http://dx.doi.org/10.1007/s42773-020-00065-z
– Khadem, A.Y., Raisi, F. and Basharti, A., 2017. A review of the effects of biochar application on the physical, chemical and biological properties of soil. Land Management, 5(1): 13-30 (In Persian with English summary). https://doi.org/10.22092/lmj.2017.113291
– Kjeldahl, C., 1883. A new method for the determination of nitrogen in organic matter. Z Anal Chem, 22, 366. http://dx.doi.org/10.1007/BF01338151
– Kul, R., Arjumend, T., Ekinci, M., Yildirim, E., Turan, M. and Argin, S., 2021. Biochar as an organic soil conditioner for mitigating salinity stress in tomato. Soil Science and Plant Nutrition, 67(6): 693-706. https://doi.org/10.1080/00380768.2021.1998924
– Li, H., Dong, X., da Silva, E.B., de Oliveira, L.M., Chen, Y. and Ma, L.Q., 2017. Mechanisms of metal sorption by biochars: biochar characteristics and modifcations. Chemosphere, 178:466–478. https://doi.org/10.1016/j.chemosphere.2017.03.072
– Major, J., Marco, R., Diego, M., Riha, S.J. and Lehmann, J., 2012. Nutrient leaching in a Colombian savanna Oxisol amended with biochar. Journal of environmental quality, 41(4): 1076-1086. https://doi.org/10.2134/jeq2011.0128
– Masto, R.E., Kumar, S., Rout, T.K., Sarkar, P., George, J. and Ram, L.C., 2013. Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. Catena 111:64–71. https://doi.org/10.1016/j.catena.2013.06.025
– Mohebi, A., Arabzadeh, Nasser, Jafari, A.A., Zandi Isfahan, E. and Eftekhari, A., 2017. Evaluation of the establishment percentage of the populations of the most important perennial fodder plants in different vegetation areas of Kerman province. Iranian Journal of Range and Desert Research, 25(2):335 – 343 (In Persian with English summary). https://doi.org/10.22092/ijrdr.2018.116845
– Moradi, N., Rasouli-Sadaghiani, M.H. and Sepehr, E., 2017. Effect of biochar types and rates on some soil properties and nutrients availability in a calcareous soil. Water and Soil, 31(4): 1232-1246. https://doi.org/10.22067/jsw.v31i4.61298
– Nikravesh, I., Boroomandnasab, S., Naseri, A. and Mohamadi, A.S., 2018. Investigating the effect of wheat straw Biochar and Hydrochar on physical properties of a Sandy Loam soil. Journal of Water and Soil, 32(2):387-397 (In Persian with English summary). https://doi.org/10.22067/jsw.v32i2.70445
– Olsen, S.R. and Sommers, L.E., 1982. Phosphorus. In: Page, A.L., Ed., Methods of Soil Analysis Part 2 Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, Madison, 403-430. https://doi.org/10.2134/agronmonogr9.2.2ed.c24
– Sarli, R., Roshan, G. and Grab, S., 2019. Evaluation and prediction of vegetation changes of Mazandaran, Iran from 2005 to 2017 using Markov chain method and Geographical Information Systems (GIS). Scientific-Research Quarterly of Geographical Data (SEPEHR), 28(111):149-162. https://doi.org/10.22131/sepehr.2019.37514
– Semida, W.M., Beheiry, H.R., Sétamou, M., Simpson, C.R., Abd El-Mageed, T.A., Rady, M.M. and Nelson, S.D., 2019. Biochar implications for sustainable agriculture and environment: A review. South African Journal of Botany, 127: 333-347. https://doi.org/10.1016/j.sajb.2019.11.015
– Tavili, A., Bashari, H., Yazdanshenas, H., Jafari, M., Arzani, H. and Azarnivand, H., 2019."Morphophysiological changes of wild Stachys multicaulis species under physical conditions during the cultivation process." Heliyon, 5(7); e02093. https://doi.org/10.1016/j.heliyon.2019.e02093
– Wang, Y.Y., You, L.C., Lyu, H.H., Liu, Y.X., He, L.L., Hu, Y.D., Luo, F.C. and Yang, S.M. 2022. Role of biochar--mineral composite amendment on the immobilization of heavy metals for Brassica chinensis from naturally contaminated soil. Environmental Technology \& Innovation, Elsevier, 28, 102622. https://doi.org/10.1016/j.eti.2022.102622
– Yang, F., Xu, Z., Huang, Y., Tsang, D.C.W., Ok, Y.S., Zhao, L., Qiu, H., Xu, X. and Cao, X., 2021. Stabilization of dissolvable biochar by soil minerals: Release reduction and organo-mineral complexes formation. Journal of hazardous materials, Elsevier, 412, 125213. https://doi.org/10.1016/j.jhazmat.2021.125213
– Yazdanshenas, H., Jafary, M., Tavili, A., Arzani, H. and Azarnivand, H., 2019. Effect of Drought and Salinity Stress on Morpho-physiologycal Variation of the Iranian Endemic Stachys multicaulis Benth. in Different Soil Textures. Journal of Rangeland Science, 9(3): 246-258. https://journals.iau.ir/article_545096.html
– Zareabayneh, H., Bayat Varkeshi, M., Sabziparvar, A.A., Marofi, S. and Ghasemi, A., 2011. Evaluation of different reference evapotranspiration methods and their zonings in Iran. Physical Geography Research Quarterly, 42(4): 95-109 (In Persian with English summary). https://jphgr.ut.ac.ir/article_22205.html