The purpose of this research was to investigate the impact of pH, EC, and organic carbon (OC) on the amount of total nitrogen in the soil of the Zarin Shahr Region using statistical analyses (borderline analysis and step-by-step regression). In the Zarinshahr region, a comprehensive study was conducted for a duration of one year across all four seasons. The study employed GPS technology to select a total of 60 points in agricultural, tree plantations, and bare soil areas while ensuring an average distance of 546 meters between each point. The plots areas were 50x50x20 cm in length, width, and height. The various soil samples collected from these plots were analyzed. Then, the maximum reaction of a biogeochemical process to a certain environmental factor was determined using borderline analysis. According to the findings, the soil's EC exhibited higher readings during the hotter seasons of the year, in comparison to other seasons. Specifically, during the summer, the maximum value of this parameter was approximately 1587 dS/m, while in the winter, the values were nearly 1140 dS/m. Also, pH levels of the soil was generally alkaline. The seasonal variations in soil OC and organic matter percentage were evident, with notably lower values (ranging from 0.04-2.52) in the autumn and winter, followed by a marked increase during the summer and spring (0.12-2.39). Boundary line analysis was used to investigate the relationships between variables and the values of indicators that caused the maximum increase in soil nitrogen. It was ascertained that OC percentage and soil nitrogen percentage exhibited a significant linear correlation in all land uses. Hence, increase in OC percentage resulted in an increase in the total nitrogen content in the soil. The step-by-step regression analysis in a systematic manner revealed that, within the variables under investigation, the percentage of total nitrogen in the soil can be determined based on the impact of two key parameters, namely, EC and the percentage of OC. The results suggest that use of boundary line analysis and step-by-step regression represent a viable approach for determining the effects of the significant factors on the levels of nitrogen content in the soil. |
- الوندی، ا. د. فروتن و م. دهمرده قلعه نو.1397. مدلسازی تناسب زمین برای توسعه شهری با استفاده از روشهای تصمیمگیری چند شاخصه و GIS مطالعه موردی: حوضه آبخیز زیارت استان گلستان. فصلنامه علمی-پژوهشی اطلاعات جغرافیایی «سپهر»، 26(101):81-169.
- حجارپور، ا. ا. سلطانی و ب. ترابی. 1394. استفاده از آنالیز خط مرزی در مطالعات خلأ عملکرد: مطالعه موردی گندم در گرگان مجله تولید گیاهان زراعی، 8(4): 183-201.
- دهنوی، ا. س. متین خواه، و ن. نوربخش. 1392. بررسی نقش داغداغان “Celtis caucasica” بهعنوان درخت تثبیتکننده نیتروژن بر خصوصیات خاک زیراشکوب در ذخیرهگاه جنگلی اردسته دهاقان-اصفهان. تحقیقات جنگل و صنوبر ایران، 21(4): 643-653.
- سیاهمرگویی، آ.، ب. ترابی.، ر. سهرابی، و س م. عالیمقام.1397. بررسی خلاء عملکرد ناشی از علفهای هرز و عوامل مدیریتی بر عملکرد سویا در شهرستان کلاله. به زراعی کشاورزی، 20(2): 563-576.
- شیدای کرکج، ا.، ع. سپهری.، ح. بارانی و ج. معتمدی. 1396. ارتباط ذخیره کربن آلی خاک با برخی ویژگیهای خاک در مراتع آذربایجان شرقی. مرتع، 11: 125- 137.
- کاشیساز، م.، ص. عبدالامیر، و آ. لطفعلی. 1394. بررسی روند تغییرات غلظت آمونیم و نیترات در نیمرخ خاک، در سه نوع تناوبزراعی. مجله مدیریت خاک و تولید پایدار، 5(2): 149-163.
- نوبتیانی، م.، ش. راحمی کاریزکی.، ع. بیابانی، و ر. منصوری.1401. بررسی و تعیین سهم کودهای شیمیایی ماکرو و خصوصیات خاک بر خلأ عملکرد گندم (Triticum aestivum L.) در شهرستان کلاله با استفاده از روش آنالیز خط مرزی. مجله تولید گیاهان زراعی، 13(4): 1-4..
- نه بندانی، ع ر.، ا. سلطانی.، ا. زینلی، و ف. حسینی.1396. تحلیل عوامل محدودکننده عملکرد سویا در شرایط گرگان و علی آبادکتول با استفاده از روش CPA، 7(1): 109-123.
- Altieri, M. A. 2018. Agroecology: the science of sustainable agriculture. CRC Press.
- Ayoubi, S., Amiri, S., and Tajik, S., 2014. Lithogenic and anthropogenic impacts on soil surface magnetic susceptibility in an arid region of Central Iran. Archives of Agronomy and Soil Science. 60 (10), 1467-1483.
- Barros, G. V., Martinelli, L. A., Novais, T. M. O., Ometto, J. P. H., Zuppi, G. M. 2010. Stable isotopes of bulk organic matter to trace carbon and nitrogen dynamics in an estuarine ecosystem in Babitonga Bay (Santa Catarina, Brazil). Science of the Total Environment. 408 (10): 2226-2232.
- Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agron. J. 56: 464-465.
- Bremner JM. 1996. Nitrogen‐ Methods of soil analysis: Part 3 Chemical methods. 1(5): 1085-121.
- Brevik, Eric C., Thomas E. Fenton, and Andreas Lazari. "Soil electrical conductivity as a function of soil water content and implications for soil mapping." Precision Agriculture 7 (2006): 393-404.
- Chapagain, N. P. 2016. Total ozone content over Kathmandu from TOMS observations. Int. J. Eng. Res. Appl. 6: 69-80.
- Chapman, H. D. 1965. Cation-exchange capacity. Methods of soil analysis. Part 2. Chemical and microbiological properties (methods of soil analysis). Monograph. 9(2): 891-901.
- El-Zeiny, A. M., Effat, H. A. 2019. Environmental analysis of soil characteristics in El-Fayoum Governorate using geomatics approach. Environmental Monitoring and Assessment. 191 (7): 1-20.
- Friedman, Shmulik P. "Soil properties influencing apparent electrical conductivity: a review." Computers and electronics in agriculture 46.1-3 (2005): 45-70.
- Kahumba, A. 2018. Assessment of the impact of land use practices on vegetation, soil and carbon-nitrogen sequestration potential in Mopane rangelands of central Northern Namibia.
- Lark, R. M., Gillingham, V., Langton, D. Marchant, B. P. 2020. Boundary line models for soil nutrient concentrations and wheat yield in national‐scale datasets. European Journal of Soil Science. 71 (3): 334-351.
- Leszczyński., J. 2021. Removal of Ammonium Ions from Aqueous Solutions Using Weathered Halloysite. Materials. 14(16): 4359-4371.
- Medinski, T. V., Mills, A. J., Esler, K. J., Schmiedel, U., & Jürgens, N. (2010). Do soil properties constrain species richness? Insights from boundary line analysis across several biomes in south western Africa. Journal of Arid Environments, 74(9), 1052-1060.
- Rhoades, J.D. 1982. Chemical and microbiological Properties. Agronomy Monograph no. 9. 2nd ed. SSSA and ASA, Madison. 2: 167-179.
- Sharma, G., Sharma, R., Sharma, E. 2009. Impact of stand age on soil C, N and P dynamics in a 40-year chronosequence of alder-cardamom agroforestry stands of the Sikkim Himalaya. Pedobiologia. 52 (6): 401-414.
- Song, Z., Zheng, Z., Li, J., Sun, X., Han, X., Wang, W. Xu, M. 2006. Seasonal and annual performance of a full-scale constructed wetland system for sewage treatment in China. Ecological engineering. 26 (3): 272-282.
- Schmidt, U., Thöni, H., & Kaupenjohann, M. (2000). Using a boundary line approach to analyze N2O flux data from agricultural soils. Nutrient Cycling in Agroecosystems, 57, 119-129.
- Tajik, S., Ayoubi, S., Lorenz, N. 2020. Soil microbial communities affected by vegetation, topography and soil properties in a forest ecosystem. Applied Soil Ecology. 149: 103-114.
- West, N. 2015. Determination of the baseline levels of key chemical parameters in a proposed aquaculture development zone.
- Yuan, D., Yang, D., Pu, G., Zhang, Q., Chen, X., Peng, W., Sun, J., Xiong, S., Li, J. 2013. Fertility dynamics of three types of tea garden soils in Western Sichuan, China. Pak. J. Agri. Sci. 50 (1): 29-35.
- Zarei, A. 2019. Sustainable Agriculture. Day System.
- Zhao, H. L., Yi, X.Y., Zhou, R.L., Zhao, X.Y., Zhang, T.H., Drake, S., 2006. Wind erosion and sand accumulation effects on soil properties in Horqin Sandy Farmland, Inner Mongolia. Catena. 65 (1): 71-79.
|