- سالنامه آماری استان زنجان 1398، «1- سرزمین و آبوهوا»، سازمان آمار کشور.
- عباس زاده افشار، ف.، و ایوبی، ش.، و جعفری، ا. 1397. پیشبینی مکانی گروه بزرگهای خاک با استفاده از مدلهای رگرسیونی و درخت تصمیم در منطقه جنوب شرق ایران. مهندسی زراعی (مجله علمی کشاورزی), 41(2): 133-146.
- فاتحی، ش.، محمدی، ج.، صالحی، م.، مؤمنی، ع.، تومانیان، ت.، جعفری، ا. 1394. انبوهشزدائی مکانی نقشهی سنتی خاک با استفاده از رگرسیون لاجیستیک چند کلاسه و درختان طبقهبندی) مطالعه موردی: زیر حوضه آبخیز مرک در استان کرمانشاه. چهاردهمین کنگره علوم خاک ایران، 28-30 شهریور، رفسنجان، ایران، 208-213.
- فرزام نیا، پ.، منافی، ش.، ممتاز، ح.ر. 1394. تشکیل و تحول خاکهای متشکله بر روی رسوبات کواترنر در بخشی از دشت ارومیه. مجله مدیریت خاک و تولید پایدار، 5(2): 93-111.
- مصلح، ز.، صالحی، م. ح.، و جعفری، ع. 1396. نقشهبرداری رقومی کلاسهای خاک در سطوح مختلف ردهبندی آمریکایی با استفاده از مدل رگرسیون درختی توسعهیافته در دشت شهرکرد. چهاردهمین کنگره علوم خاک ایران، 28-30 شهریور، رفسنجان، ایران، 347-343.
- مقصودی ز، رستمینیا م، فرامرزی م، کشاورزی ع، رحمانی ا، موسوی س.ا. نقشهبرداری رقومی کلاس فامیل خاک با استفاده از رویکرد یادگیری ماشین (مطالعه موردی: اراضی نیمهخشک غرب ایران). 1399. مجله علوم آبوخاک. ۲۴ (۲): ۱۶۳-۱۵۳.
- موسوی، س.، و سرمدیان، ف.، و رحمانی، ا. 1398. مدلسازی و پیشبینی مکانی کلاس خاک با استفاده از الگوریتم یادگیری رگرسیون درختی توسعهیافته و جنگلهای تصادفی در بخشی از اراضی دشت قزوین. تحقیقات آبوخاک ایران (علوم کشاورزی ایران), 50(10): 2525-2538.
- موسسه تحقیقات خاک و آب. ١٣89. مطالعات پژوهشی مکانیابی، خاکشناسی و ارزیابی اراضی برای احداث باغات در استان زنجان. نشریه شماره 1547، 364 صفحه. کرج. ایران.
- Abeare, S. 2009. Comparisons of boosted regression tree, GLM and GAM performance in the standardization of yellowfin tuna catch-rate data from the Gulf of Mexico lonline [sic] fishery.
- Adhikari, K., Hartemink, A.E., Minasny, B., Bou Kheir, R., Greve, M.B., and Greve M.H. 2014. Digital mapping of soil organic carbon contents and stocks in Denmark. PLoS ONE, 9:1-13.
- Artieda, O., Herrero, J., and Drohan, P. J. 2006. Refinement of the differential water loss method for gypsum determination in soils. Soil Science Society of America Journal, 70(6): 1932-1935.
- Behrens, T., Schmidt, K., MacMillan, R. A., and Viscarra Rossel, R. A. 2018. Multi-scale digital soil mapping with deep learning. Scientific reports, 8(1): 1-9.
- Bouyoucos, G. J. 1962. Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal, 54(5): 464-465.
- Breiman, L. 2001. Random forests. Machine learning, 45(1): 5-32.
- Breiman, L., and Cutler, A. 2004. Random Forests. Department of Statistics, University of Berkeley.
- Brungard, C. W., Boettinger, J. L., Duniway, M. C., Wills, S. A., and Edwards Jr, T. C. 2015. Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma, 239: 68-83.
- Congalton, R. G. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of environment, 37(1): 35-46.
- Debella-Gilo, M., and Etzelmüller, B. 2009. Spatial prediction of soil classes using digital terrain analysis and multinomial logistic regression modeling integrated in GIS: Examples from Vestfold County, Norway. Catena, 77(1): 8-18.
- Elith, J., Leathwick, J. R., and Hastie, T. 2008. A working guide to boosted regression trees. Journal of animal ecology, 77(4): 802-813.
- Elnaggar, A. A. 2007. Development of predictive mapping techniques for soil survey and salinity mapping. Oregon State University.
- Evans, D.L., Janes‐Bassett, V., Borrelli, P., Chenu, C., Ferreira, C.S., Griffiths, R.I., Kalantari, Z., Keesstra, S., Lal, R., Panagos, P. and Robinson, D.A. 2022. Sustainable futures over the next decade are rooted in soil science. European Journal of Soil Science, 73(1):
- Fan, N.Q., Zhao, F.H., Zhu, L.J., Qin, C.Z. and Zhu, A.X. 2022. Digital soil mapping with adaptive consideration of the applicability of environmental covariates over large areas. International Journal of Applied Earth Observation and Geoinformation, 113:102986.
- Garg, K.K., Anantha, K.H., Nune, R., Akuraju, V.R., Singh, P., Gumma, M.K., Dixit, S. and Ragab, R. 2020. Impact of land use changes and management practices on groundwater resources in Kolar district, Southern India. Journal of Hydrology: Regional Studies, 31: 100732.
- Hartemink, A. E., A. McBratney and M. d. L. Mendonca-Santos. 2008. Digital soil mapping with limited data.
- Helfenstein, A., Mulder, V.L., Heuvelink, G.B. and Okx, J.P. 2022. Tier 4 maps of soil pH at 25 m resolution for the Netherlands. Geoderma, 410:115659.
- Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B., and Gräler, B. 2018. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ, 6, e5518.
- Hengl, T., Toomanian, N., Reuter, H., and Malakouti, M.J. 2007. Methods to interpolate soil categorical variables from profile observations: Lessons from Iran. Geoderma, 140: 417–427.
- A., Finke P.A, Van deWauw, J., Ayoubi, S., and Khademi, H. 2012. Spatial prediction of USDA-great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types. EuropianJournal Soil Science, 63(2): 284–298.
- Jafari, A., Ayoubi, S., Khademi, H., Finke, P. A., and Toomanian, N. 2013. Selection of a taxonomic level for soil mapping using diversity and map purity indices: a case study from an Iranian arid region. Geomorphology, 201:86-97.
- Jenny, H. 1994. Factors of soil formation: a system of quantitative pedology. Courier Corporation.
- Jensen, J. R. 1996. Introductory digital image processing: a remote sensing perspective (No. Ed. 2). Prentice-Hall Inc.
- Jeune, W., Francelino, M. R., Souza, E. D., Fernandes Filho, E. I., & Rocha, G. C. 2018. Multinomial logistic regression and random forest classifiers in digital mapping of soil classes in western Haiti. Revista Brasileira de Ciência do Solo, 42.
- Kempen, B., Brus, D. J., Heuvelink, G. B., and Stoorvogel, J. J. 2009. Updating the 1: 50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach. Geoderma, 151(3-4): 311-326.
- Kirkham, M. B. 2014. Principles of soil and plant water relations. Academic Press.
- Kleinbaum, A. M. 2018. Reorganization and tie decay choices. Management Science, 64(5): 2219-2237.
- Kuhn, M., and Johnson, K. 2013. Applied predictive modeling (Vol. 26, p. 13). New York: Springer.
- Lagacherie, P., McBratny, A.B. and Volts, M. 2007. Digital soil mapping: An introductory perspective. Developments in soil science 31(Elsevier, Amsterdam).
- Lanyon, L. E., and Heald, W. R. 1983. Magnesium, calcium, strontium, and barium. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9: 247-262.
- Liang, P., Qin, C.-Z., Zhu, A.-X., Hou, Z.-W., Fan, N.-Q., Wang, Y.-J. 2020. A case-based method of selecting covariates for digital soil mapping. Journal of Integrative Agriculture 19: 2–11
- Ma, Y., Minasny, B., Malone, B. P., and Mcbratney, A. B. 2019. Pedology and digital soil mapping (DSM). European Journal of Soil Science, 70(2): 216-235.
- Mallah, S., Delsouz Khaki, B., Davatgar, N., Scholten, T., Amirian-Chakan, A., Emadi, M., Kerry, R., Mosavi, A.H. and Taghizadeh-Mehrjardi, R., 2022. Predicting Soil Textural Classes Using Random Forest Models: Learning from Imbalanced Dataset. Agronomy, 12(11): 2613.
- Marchetti, A., Piccini, C., Santucci, S., Chiuchiarelli, I., and Francaviglia, R. 2011. Simulation of soil types in Teramo province (Central Italy) with terrain parameters and remote sensing data. Catena, 85(3): 267-273.
- Markus, E., and Merkli, C. 2007. Weathering, mineralogical evolution and soil organic matter along aHolocene soil toposequence developed on carbonate-rich materials. Geomorphology 97: 675-696.
- McBratney, A. B., Santos, M. M., and Minasny, B. 2003. On digital soil mapping. Geoderma, 117(1-2): 3-52.
- McBratney, A., de Gruijter, J., and Bryce, A. 2019. Pedometrics timeline. Geoderma, 338: 568-575.
- Olaya, V. 2004. A gentle introduction to SAGA GIS. The SAGA user group.
- Padarian, J., Minasny, B., and McBratney, A. B. 2020. Machine learning and soil sciences: A review aided by machine learning tools. Soil, 6(1): 35-52.
- Pelegrino, M. H. P., Silva, S. H. G., Menezes, M. D. D., Silva, E. D., Owens, P. R., and Curi, N. 2016. Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas. Ciência e Agrotecnologia, 40:534-546.
- Perry Jr, C. R., & Lautenschlager, L. F. 1984. Functional equivalence of spectral vegetation indices. Remote sensing of environment, 14(1-3): 169-182.
- Richards, L.A. 1954. Diagnosis and improvement of saline and alkali soils (Vol. 78, No. 2, p. 154). LWW.
- Schaetzl, R. J., and Thompson, M. L. 2015. Soils. Cambridge university press.
- Scull, P., Franklin, J., and Chadwick, O.A. 2005. The application of classification tree analysis to soil type prediction in a desert landscape. Ecological Modelling, 181: 1–15.
- Soil science division staff. 2017. "Soil survey manual". USDA Handbook 18.120-131
- Staff, S. S. 2014. Keys to soil taxonomy. United States Department of Agriculture: Washington, DC, USA.
- Sumner, M. E., and Miller, W. P. 1996. Cation exchange capacity and exchange coefficients. Methods of soil analysis: Part 3 Chemical methods, 5:1201-1229.
- Santra, P., Meena, H.M. and Yadav, O.P. 2021. Spatial and temporal variation of photosynthetic photon flux density within agrivoltaic system in hot arid region of India. Biosystems Engineering, 209:74-93.
- Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., and Malone, B. P. 2014. Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, 213:15-28.
- Taghizadeh-Mehrjardi, R., Nabiollahi, K., Minasny, B., and Triantafilis, J. 2015. Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran. Geoderma, 253: 67-77.
- Taghizadeh-Mehrjardi, R., Mahdianpari, M., Mohammadimanesh, F., Behrens, T., Toomanian, N., Scholten, T. and Schmidt, K., 2020. Multi-task convolutional neural networks outperformed random forest for mapping soil particle size fractions in central Iran. Geoderma, 376, p.114552.
- Tan, W. F., Zhang, R., Cao, H., Huang, C. Q., Yang, Q. K., Wang, M. K., and Koopal, L. K. 2014. Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China. Catena, 121: 22-30.
- Vaysse, K., and Lagacherie, P. 2015. Evaluating digital soil mapping approaches for mapping Global Soil Map soil properties from legacy data in Languedoc-Roussillon (France). Geoderma Regional, 4: 20-30.
- Walkley, A., and Black, I. A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1): 29-38.
- Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N. and Wollschläger, U. 2019. Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales. Geoderma, 333: 149-162.
- Xiao-Lin, S. U. N., Yu-Guo, Z. H. A. O., ZHANG, G. L., Sheng-Chun, W. U., Yu-Bon, M. A. N., and Ming-Hung, W. O. N. G. 2011. Application of a digital soil mapping method in producing soil orders on mountain areas of Hong Kong based on legacy soil data. Pedosphere, 21(3): 339-350.
- Yang, l., Jiao, Y., Fahmy, S., Zhu, A-X., Hann, S., Burt, J. E., and Qi, F. 2011. Updating conventional
soil maps through digital soil mapping. Soil Science Society of America Journal AbstractPedology,75(3): 1044-1053
- Zhang, G.L., Liu, F., Song, X.D. 2017. Recent progress and future prospect of digital soil mapping: A review. Journal of Integrative Agriculture 16 (12): 2871–2885.
- Zinck, J.A., Metternicht, G., Bocco, G. and Del Valle, H.F. eds. 2015. Geopedology: An integration of geomorphology and pedology for soil and landscape studies. Springer.
|