Ban, X., Qi, T., Wang, H. Z., Du, H., Diplas, P., Xiao, F. & Huang, W. (2022). Comprehensive Environmental Flows Assessment for Multi Guilds in the Riparian Habitats of the Yangtze River. Water Resources Research, 58(9), e2021WR030408.
Boavida, I., Caetano, L. & Pinheiro, A. N. (2020). E-flows to reduce the hydropeaking impacts on the Iberian barbel (Luciobarbus bocagei) habitat. An effectiveness assessment based on the COSH Tool application. Science of The Total Environment, 699, 134209.
Hamidifar, H., Akbari, F. & Rowiński, P. M. (2022). Assessment of Environmental Water Requirement Allocation in Anthropogenic Rivers with a Hydropower Dam Using Hydrologically Based Methods—Case Study. Water, 14(6), 893.
Judes, C., Capra, H., Gouraud, V., Pella, H. & Lamouroux, N. (2023). Past hydraulics influence microhabitat selection by invertebrates and fish in hydropeaking rivers. River Research and Applications, 39(3), 375-388.
Jouladeh-Roudbar, A., Ghanavi, H. R. & Doadrio, I. (2020). Ichthyofauna from Iranian freshwater: Annotated checklist, diagnosis, taxonomy, distribution and conservation assessment. Zoological Studies, 59, 21.
Karimi, S., Salarijazi, M., Ghorbani, K. & Heydari, M. (2021). Comparative assessment of environmental flow using hydrological methods of low flow indexes, Smakhtin, Tennant and flow duration curve. Acta Geophysica, 69(1), 285-293.
Kim, S. K. & Choi, S. U. (2019). Comparison of environmental flows from a habitat suitability perspective: A case study in the Naeseong cheon Stream in Korea. Ecohydrology, 12(6), 1-10.
Kim, S., Jung, K. & Kang, H. (2022). Response of fish community to building block methodology mimicking natural flow regime patterns in Nakdong River in South Korea. Sustainability, 14(6), 3587.
Kuriqi, A., Pinheiro, A. N., Sordo-Ward, A. & Garrote, L. (2019). Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants. Applied Energy, 256, 113980.
Meric, B. T. (2022). Environmental flow methodology approach based on ecological impact assessment for hydroelectric power plants and hydraulic structures on stream ecosystems in Turkey. Environmental Monitoring and Assessment, 194(6), 1-13.
Mianabadi, H., Alioghli, S. & Morid, S. (2021). Quantitative evaluation of ‘No-harm’rule in international transboundary water law in the Helmand River basin. Journal of Hydrology, 599, 126368.
Naderi, M, H, Pourgholam Amiji, M., Ahmadaali, K., Amiri, Z., Ghojoghi, A. & Ghorbani Minaei, L. (2020). Determine and Design Range of Optimal Environmental Flow Zarin-Gol River by Investigation the Hydromorphological Characteristics, Hydrological Regime and Habitat Suitability Simulation Ecohydraulic Model. Journal of Fisheries, 73(1), 17-40. (In Persian)
Naderi, M, H., Arab, N., Jahandideh, O., Salarijazi, M. & Aarb, A. (2021). Estimation of Optimal Release Flow Range from Jamishan Dam Considering the Optimal Instream Ecological Water Demand for Conservation the Habitat Potential of the Dinavar River. Water and Soil, 35(2), 203-225. (In Persian)
Naderi, M, H., Pourgholam-Amiji, M., Khoshravesh, M., Salarijazi, M., mohammadi, E. & Gholizade, M. (2022). Investigating the Relationships between Hydromorphological and Hydrological Characteristics on Habitat Suitability under Scenarios of Changing the Environmental Flow Regime based on Kordan River Ecosystem Restoration. Iranian Journal of Soil and Water Research, 52(11), 2789-2814. (In Persian)
Richter, B. D., Baumgartner, J. V., Powell, J. & Braun, D. P. (1996). A method for assessing hydrologic alteration within ecosystems. Conservation biology, 10(4), 1163-1174.
Sahami, S., Shokoohi, A., Khatar, B. & Chehrzad, F. (2022). Qualitative Modeling for Managing Water Allocation in Rivers. Journal of Water and SoilResources Conservation, 11(3), 31-46. (In Persian)
Sedighkia, M. & Datta, B. (2023). Linking SVM based habitat model and evolutionary optimisation for managing environmental impacts of hydropower plants. River Research and Applications,1–14.
Sedighkia, M., Badrzadeh, N., Fathi, Z., Abdoli, A. & Datta, B. (2023). An integrated simulation–optimization framework for assessing environmental flows in rivers. Environmental Monitoring and Assessment, 195(2), 292.
Shafie, B., Javid, A. H., Behbahani, H. I., Darabi, H, & Lotfi, F. H. (2023). Modeling land use/cover change based on LCM model for a semi-arid area in the Latian Dam Watershed (Iran). Environmental Monitoring and Assessment, 195(3), 363.
Shi, P., Liu, J., Yang, T., Xu, C. Y., Feng, J., Yong, B. & Li, S. (2019). New methods for the assessment of flow regime alteration under climate change and human disturbance. Water, 11(12), 2435.
Sofi, M. S., Bhat, S. U., Rashid, I. & Kuniyal, J. C. (2020). The natural flow regime: A master variable for maintaining river ecosystem health. Ecohydrology, 13(8), 2247.
Stamou, A., Polydera, A., Papadonikolaki, G., Martinez-Capel, F., Muñoz-Mas, R., Papadaki, C., & Dimitriou, E. (2018). Determination of environmental flows in rivers using an integrated hydrological-hydrodynamic-habitat modelling approach. Journal of environmental management, 209, 273-285.
Vogel, R. M., Sieber, J., Archfield, S. A., Smith, M. P., Apse, C. D. & Huber Lee, A. (2007). Relations among storage, yield, and instream flow. Water Resources Research, 43(5), 1-12.
Wang, Y., Wang, D., Lewis, Q. W., Wu, J. & Huang, F. (2017). A framework to assess the cumulative impacts of dams on hydrological regime: A case study of the Yangtze River. Hydrological Processes, 31(17), 3045-3055.
Wang, H., Wang, H., Hao, Z., Wang, X., Liu, M. & Wang, Y. (2018). Multi-objective assessment of the ecological flow requirement in the upper Yangtze national nature reserve in China using PHABSIM. Water, 10(3), 326.
Wu, H., Shi, P., Qu, S., Zhang, H. & Ye, T. (2022). Establishment of watershed ecological water requirements framework: A case study of the Lower Yellow River, China. Science of the Total Environment, 820, 153205.
Yan, M., Fang, G. H., Dai, L. H., Tan, Q. F. & Huang, X. F. (2021). Optimizing reservoir operation considering downstream ecological demands of water quantity and fluctuation based on IHA parameters. Journal of Hydrology, 600, 126647.
Yu, Z., Zhang, J., Zhao, J., Peng, W., Fu, Y., Wang, Q. & Zhang, Y. (2021). A new method for calculating the downstream ecological flow of diversion-type small hydropower stations. Ecological Indicators, 125, 107530.
Zhang, Q., Gu, X., Singh, V. P. & Chen, X. (2015). Evaluation of ecological instream flow using multiple ecological indicators with consideration of hydrological alterations. Journal of Hydrology, 529, 711-722.
Zhang, Q., Zhang, Z., Shi, P., Singh, V. P. & Gu, X. (2018). Evaluation of ecological instream flow considering hydrological alterations in the Yellow River basin, China. Global and Planetary Change, 160, 61-74.