References
1. Cao Y, Zhu X, Hossen MN, Kakar P, Zhao Y, Chen X.
Augmentation of vaccine-induced humoral and cellular
immunity by a physical radiofrequency adjuvant. Nature
communications. 2018;9(1):1-13.
2. Aguilar J, Rodriguez E. Vaccine adjuvants revisited.
Vaccine. 2007;25(19):3752-62.
3. Shah RR, Hassett KJ, Brito LA. Overview of vaccine
adjuvants: Introduction, history, and current status.
Vaccine Adjuvants. 2017:1-13.
4. Apostolico JdS, Lunardelli VAS, Coirada FC,
Boscardin SB, Rosa DS. Adjuvants: classification,
modus operandi, and licensing. Journal of immunology
research. 2016;2016.
5. Cohen S, Shafferman A. Novel Strategies in the Design
and Production of Vaccines: Springer Science &
Business Media; 1996.
6. HogenEsch H, O’Hagan DT, Fox CB. Optimizing the
utilization of aluminum adjuvants in vaccines: you
might just get what you want. npj Vaccines.
2018;3(1):1-11.
7. Facciolà A, Visalli G, Laganà A, Di Pietro A. An
Overview of Vaccine Adjuvants: Current Evidence and
Future Perspectives. Vaccines. 2022;10(5.819:)
8. Ghimire TR. The mechanisms of action of vaccines
containing aluminum adjuvants: an in vitro vs in vivo
paradigm. Springerplus. 2015;4(1):1-18.
9. Lu F, HogenEsch H. Kinetics of the inflammatory
response following intramuscular injection of aluminum
adjuvant. Vaccine. 2013;31(37):3979-86.
10. He P, Zou Y, Hu Z. Advances in aluminum hydroxidebased adjuvant research and its mechanism. Human
vaccines & immunotherapeutics. 2015;11(2):477-88.
11. Leroux-Roels G. Unmet needs in modern vaccinology:
adjuvants to improve the immune response. Vaccine.
2010;28:C25-C36.
12. Leslie M. Solution to vaccine mystery starts to
crystallize. American Association for the Advancement
of Science; 2013.
13. Ghimire TR, Benson RA, Garside P, Brewer JM. Alum
increases antigen uptake, reduces antigen degradation
and sustains antigen presentation by DCs in vitro.
Immunology letters. 2012;147(1-2):55-62.
14. Güven E, Duus K, Laursen I, Højrup P, Houen G.
Aluminum hydroxide adjuvant differentially activates
the three complement pathways with major involvement
of the alternative pathway. PLoS One. 2013;
8(9):e74445.
15. Zandieh S, Lotfi M, Kamalzadeh M, Shiri N, Parmour
E, Eshaghi A, et al. The Characteristics of an Ovine
Lymphoid Cell-Line sensitive to Vaccinal Infectious
Bursal Disease Virus Strain. Archives of Razi Institute.
2017;72(3):173-9.
16. Supply V, Organization WH. Manual of laboratory
methods for testing of vaccines used in the WHO
Expanded Programme on Immunization. World Health
Organization; 1997.
17. Sobhani M, Lotfi M, Saifi Shapouri MR. Investigating
the sensitivity of CEF, BT, MDBK and Vero cell lines
compared to RBK cell to the replication of bovine
parainfluenza virus type 3 (bPI3V). Veterinary research
and biological products. 2018;31(1):48-57. [in persion]
18. Argento E, Barros V, Gleser H, Ióppolo M, Mórtola E,
Parreño V, et al. Potencia y eficacia para vacunas
bovinas que contengan en su formulación herpesvirus
bovino 1 (Bohv-1) agente causal de la.
19.I EL-Hawary R, A Mostafa H. Immunological response
of locally prepared oil adjuvanted pneumo 5-vaccine in
calves. Journal of Veterinary Medical Research.
2017;24(1):41-7.
20. Egli A, Santer DM, O'Shea D, Barakat K, Syedbasha M,
Vollmer M, et al. IL-28B is a key regulator of B-and Tcell vaccine responses against influenza. PLoS
pathogens. 2014;1:)12(0e1004556.
21. Zaccaro DJ, Wagener DK, Whisnant CC, Staats HF.
Evaluation of vaccine-induced antibody responses:
impact of new technologies. Vaccine. 2013;
31(25):2756-61.
22. Park M-E, Lee S-Y, Kim R-H, Ko M-K, Lee K-N, Kim
S-M, et al. Enhanced immune responses of foot-andmouth disease vaccine using new oil/gel adjuvant
mixtures in pigs and goats. Vaccine. 2014;32(40):5221-7.
23.Rosado-Vallado M, Mut-Martin M, del Rosario GarcíaMiss M, Dumonteil E. Aluminium phosphate
potentiates the efficacy of DNA vaccines against
Leishmania mexicana. Vaccine. 2005;23(46-47):5372-9.
24.Issa AM, Salim MS, Zidan H, Mohamed AF, Farrag ARH. Evaluation of the effects of aluminum phosphate
1786 Heidary et al / Archives of Razi Institute, Vol. 78, No. 6 (2023) 1779-1786
and calcium phosphate nanoparticles as adjuvants in
vaccinated mice. International Journal of Chemical
Engineering and Applications. 2014;5(5):367.
25. Mahboubi A, Fazeli MR, Dinavand R, Samadi N,
Sharifzadeh M, Ilka H, et al. Comparison of the
Adjuvanticity of Aluminum Salts and Their
Combination in Hepatitis B Recombinant Protein
Vaccine Assessed in Mice. Iranian Journal of
Immunology. 2008;5(3):163-70.
26. Liang Z, Ren H, Lang Y, Li Y. Enhancement of a
hepatitis B DNA vaccine potency using aluminum
phosphate in mice. Zhonghua gan Zang Bing za zhi=
Zhonghua Ganzangbing Zazhi= Chinese Journal of
Hepatology. 2004;12(2):79-81.
27. Akbarian M, Keyvanfar H, Lotfi M. Preparation of an
Inactivated Peste des Petits Ruminants Vaccine and Its
Comparative Immunogenicity Evaluation in an Animal
Model. Archives of Razi Institute. 2021;76(4)731.
28. Kooijman S, Vrieling H, Verhagen L, de Ridder J, de
Haan A, van Riet E, et al. Aluminum Hydroxide And
Aluminum Phosphate Adjuvants Elicit A Different
Innate Immune Response. Journal of Pharmaceutical
Sciences. 2022;111(4):982-90.
29. Mei C, Deshmukh S, Cronin J, Cong S, Chapman D,
Lazaris N, et al. Aluminum phosphate vaccine adjuvant:
analysis of composition and size using off-line and inline tools. Computational and structural biotechnology
journal. 2019;17:1184-94.
30.World Organization for Animal Health, Manual of
Diagnostic Tests and Vaccines for Terrestrial Animals.
Foot And Mouth Disease (Infection With Foot And
Mouth Disease Virus) 2022 . Chapter 3.1.8 . p: 1-3