Mesgari Abbasi, Mehran, Khordadmehr, Monireh, Shanehbandi, Dariush, Jigari Asl, Farinaz, Teimuri-Mofrad, Reza, Tahmasebi, Shabnam, Asar, Mohammad Shahab, Eskandari, Fatemeh, Panahi, Yousef. (1402). Apoptosis Induction by New Coumarin Derivatives in a Mice Model of Breast Cancer. سامانه مدیریت نشریات علمی, 78(5), 1430-1439. doi: 10.32592/ARI.2023.78.5.1430
Mehran Mesgari Abbasi; Monireh Khordadmehr; Dariush Shanehbandi; Farinaz Jigari Asl; Reza Teimuri-Mofrad; Shabnam Tahmasebi; Mohammad Shahab Asar; Fatemeh Eskandari; Yousef Panahi. "Apoptosis Induction by New Coumarin Derivatives in a Mice Model of Breast Cancer". سامانه مدیریت نشریات علمی, 78, 5, 1402, 1430-1439. doi: 10.32592/ARI.2023.78.5.1430
Mesgari Abbasi, Mehran, Khordadmehr, Monireh, Shanehbandi, Dariush, Jigari Asl, Farinaz, Teimuri-Mofrad, Reza, Tahmasebi, Shabnam, Asar, Mohammad Shahab, Eskandari, Fatemeh, Panahi, Yousef. (1402). 'Apoptosis Induction by New Coumarin Derivatives in a Mice Model of Breast Cancer', سامانه مدیریت نشریات علمی, 78(5), pp. 1430-1439. doi: 10.32592/ARI.2023.78.5.1430
Mesgari Abbasi, Mehran, Khordadmehr, Monireh, Shanehbandi, Dariush, Jigari Asl, Farinaz, Teimuri-Mofrad, Reza, Tahmasebi, Shabnam, Asar, Mohammad Shahab, Eskandari, Fatemeh, Panahi, Yousef. Apoptosis Induction by New Coumarin Derivatives in a Mice Model of Breast Cancer. سامانه مدیریت نشریات علمی, 1402; 78(5): 1430-1439. doi: 10.32592/ARI.2023.78.5.1430
Apoptosis Induction by New Coumarin Derivatives in a Mice Model of Breast Cancer
1Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
2Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
3Immunology research center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
4Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
5Faculty of Veterinary Medicine, Shabestar Branch, Islamic Azad University, Shabestar, Iran
6Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
چکیده
In the last decades, numerous studies have focused on the search for new agents to suppress the growth of cancer cells. In this study, we investigated the effect of two novel synthetic coumarin derivatives, namely 2-amino-4-(4-(2-hydroxyethoxy)-3-methoxyphenyl)-5-oxo-4H,5H-pyrano[3,2-c]coumarin-3-carbonitrile and 2-amino-4-(4-hydroxyphenyl)-5-oxo-4H,5H-pyrano[3,2-c]coumarin-3-carbonitrile, on the induction of apoptosis in breast cancer in a mouse model. Breast cancer was induced in BALB/c mice, which were randomly divided into six groups and then underwent the experiment. The groups and treatments included A1: coumarin A with a low dose (10 µm), A2: coumarin A with a high dose (1 mM), B1: coumarin B with a low dose (10 µm), B2: coumarin B with a high dose (1 mM), D: doxorubicin, and C: cancer control/ treatment with normal saline. The samples underwent treatments for 5 weeks. Animals were euthanized, and tissue samples, including the lung, liver, and tumor mass, were collected for histopathological examination. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine some apoptotic markers, such as BCL-2, caspase-9, COX-2, and c-Myc. The qRT-PCR presented that both coumarin compounds could significantly alter the expression levels of BCL-2, caspase-9, COX-2, and c-Myc. Consistent with these results, histopathological observations showed a significant reduction in pathological lesions and severity of malignancy of the tumor mass, as well as a decrease in microscopic metastases in the lung and liver. This suggests that the present new coumarin compounds may induce apoptosis in breast cancer cells by altering some apoptosis-related genes that may play a chemotherapeutic role in breast cancer therapy in the future.
Sung H, Ferlay J, Siegel RL et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: Cancer J Clin. 2021;71(3):209-49. doi: 10.3322/caac.21660.
Costa A, Vale N. Strategies for the treatment of breast cancer: from classical drugs to mathematical models. Mathematical biosciences and engineering : MBE 2021;18(5):6328-85. doi: 10.3934/mbe.2021316.
Elahirad E, Sasani F, Khosravi A, Gharagozlou MJ, Khanbarari F. Evaluation of Cytokeratin 7 Expression in Different Mammary Gland Neoplasms. Iran J Vet Med. 2021;15(1):56-67. doi:10.22059/ijvm.2020.295956.1005052
Mansoor Lakooraj H, Khaki Z, Ghorbani M, Shafiee Ardestani M, Dezfoulian O. The in vitro Effect of Doxorubicine-G2-FA Treatment on Breast Cancer Copyright. Iran J Vet Med. 2020;14(2):147-158. doi:10.22059/ijvm.2019.291998.1005039
Koohi MK, Zare Mirakabadi A, Moharrami M, Hablolvarid MH. Anti-cancer effect of ICD-85(venom derived peptides) on MDA-MB231 cell line (in vitro) and experimental mice with breast cancer (in vivo). Iran J Vet Med. 2009;3(1):-. doi:10.22059/ijvm.2009.19609
Mojibi R, Morad Jodaki H, Mehrzad J, Khosravi A, Sharifzadeh A, Nikaein D. Apoptotic Effects of Caffeic Acid Phenethyl Ester and Matricaria chamomilla Es-sential Oil on A549 Non-Small Cell Lung Cancer Cells. Iran J Vet Med. 2022;16(4):390-399. doi:10.22059/ijvm.2022.335092.1005217.
Mann J. Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer. 2002;2(2):143-8. doi: 10.1038/nrc723.
Laskar S, Brahmachari G. editors. Access to biologically relevant diverse chromene heterocycles via multicomponent reactions (MCRs): Recent advances. SOAJ .Org Biomol Chem. 2014; 2: 1-50. http://signpostejournals.com.
Lacy A, O'Kennedy R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr Pharm Des. 2004;10(30):3797-811. doi: 10.2174/1381612043382693.
Musa MA, Cooperwood JS, Khan MOF. A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr Med Chem. 2008;15(26):2664-79. doi: 10.2174/092986708786242877.
Farhangi B, Alizadeh AM, Khodayari H, Khodayari S, Dehghan MJ, Khori V et al. Protective effects of dendrosomal curcumin on an animal metastatic breast tumor. Eur J Pharmacol. 2015;758:188-96. doi: 10.1016/j.ejphar.2015.03.076.
Born SL, Hu JK, Lehman-McKeeman LD. o-hydroxyphenylacetaldehyde is a hepatotoxic metabolite of coumarin. Drug Metab Dispos. 2000;28(2):218-23.
Lake BG. Coumarin metabolism, toxicity and carcinogenicity: relevance for human risk assessment. Food Chem Toxicol. 1999; 37(4):423-53. doi: 10.1016/s0278-6915(99)00010-1.
Bijari N, Shokoohinia Y, Ashrafi-Kooshk MR et al. Spectroscopic study of interaction between osthole and human serum albumin: Identification of possible binding site of the compound. J Lumin. 2013;143:328-36. doi: https://doi.org/10.1016/j.jlumin.2013.04.045.
Thakur A, Singla R, Jaitak V. Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies. Eur Med Chem. 2015;101:476-95. doi: 10.1016/j.ejmech.2015.07.010.
Gong X, Zheng Y, He G et al. Multifunctional nanoplatform based on star-shaped copolymer for liver cancer targeting therapy. Drug Deliv. 2019;26(1):595-603. Epub 2019/06/15. doi: 10.1080/10717544.2019.1625467.
Kostova I. Synthetic and natural coumarins as cytotoxic agents. Curr Med Chem Anticancer Agents. 2005;5(1):29-46. doi: 10.2174/1568011053352550.
Myers RB, Parker M, Grizzle WE. The effects of coumarin and suramin on the growth of malignant renal and prostatic cell lines. J Cancer Res Clin Oncol. 1994;120 Suppl:S11-3. doi: 10.1007/bf01377115.
Maucher A, von Angerer E. Antitumour activity of coumarin and 7-hydroxycoumarin against 7,12-dimethylbenz[a]anthracene-induced rat mammary carcinomas. J Cancer Res Clin Oncol. 1994;120(8):502-4. doi: 10.1007/bf01191806.
Kaur M, Kohli S, Sandhu S et al. Coumarin: a promising scaffold for anticancer agents. Anticancer Agents Med Chem. 2015;15(8):1032-48. doi: 10.2174/1871520615666150101125503.
Musa MA, Khan MO, Cooperwood JS. Synthesis and antiproliferative activity of coumarin-estrogen conjugates against breast cancer cell lines. Lett Drug Des Discov. 2009;6(2):133-8. doi: 10.2174/157018009787582624.
Batran RZ, Dawood DH, El-Seginy SA et al. New Coumarin Derivatives as Anti-Breast and Anti-Cervical Cancer Agents Targeting VEGFR-2 and p38α MAPK. Archiv der Pharmazie 2017;350(9). doi: 10.1002/ardp.201700064.
Cao D, Liu Y, Yan W et al. Design, Synthesis, and Evaluation of in Vitro and in Vivo Anticancer Activity of 4-Substituted Coumarins: A Novel Class of Potent Tubulin Polymerization Inhibitors. J Med Chem. 2016;59(12):5721-39. doi: 10.1021/acs.jmedchem.6b00158.
Schmitt CA, Fridman JS, Yang M et al. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell. 2002;1(3):289-98. doi: 10.1016/s1535-6108(02)00047-8.
Chipuk JE, Kuwana T, Bouchier-Hayes L et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science (New York, NY) 2004;303(5660):1010-4. doi: 10.1126/science.1092734.
Molnár T, Pallagi P, Tél B, Király R et al. Caspase-9 acts as a regulator of necroptotic cell death. FEBS J. 2021;288(22):6476-91. doi: https://doi.org/10.1111/febs.15898.
Tummers B, Green DR. Caspase-8: regulating life and death. Immunol Rev 2017;277(1):76-89. doi: 10.1111/imr.12541.
Sorolla A, Wang E, Golden E et al. Precision medicine by designer interference peptides: applications in oncology and molecular therapeutics. Oncogene 2020;39(6):1167-84. doi: 10.1038/s41388-019-1056-3.
Sheng H, Shao J, Washington MK et al. Prostaglandin E2 increases growth and motility of colorectal carcinoma cells. J Biol Chem. 2001;276(21):18075-81. doi: 10.1074/jbc.M009689200.