Short Communication

Molecular Analysis of *Enterococcus Faecalis* Isolates in a 4-year Period

Azin Sattari-Maraji¹, Mohammad Emaneini², Fereshteh Jabalameli³, Reza Beigverdi^{3*}

1. Tehran university of medical sciences

 Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

How to cite this article: Sattari-Maraji A, Emaneini M, Jabalameli F, Beigverdi R. Molecular analysis of *Enterococcus faecalis* isolates collected during a 4-year period. Archives of Razi Institute. 2023;78(6):1873-77. DOI: 10.32592/ARL2023.78.6.1873

Razi Vaccine & Serum Research Institute

Article Info: Received: 30 April 2023 Accepted: 06 June 2023 Published: 30 December 2023

Corresponding Author's E-Mail: r-beigverdi@tums.ac.ir

ABSTRACT

In the present research, we aimed to determine the characteristics of E. faecalis strains collected from an Iranian Children's Hospital for four years. Sixty-seven E. faecalis isolates with virulence genes detection, variable-number tandem repeat (VNTR), and multiple-locus variable-number tandem repeat analysis (MLVA) typing were investigated. A high frequency of virulence genes belonged to gelatinase (73%) and Enterococcus faecalis (62%). The MLVA of 67 E. faecalis isolates revealed 52 VNTR patterns and 38 MLVA types (MTs). Furthermore, genetic diversities with the majority of the MT1 as a major MT in different Wards of the Children's Hospital were found.

Keywords: Antimicrobial resistance, Enterococcus faecalis, MLVA, Virulence factors

1. Introduction

Enterococcus faecalis is considered an importantacquired pathogen, which has frequently been isolated from all common infections, including urinary tract infection (UTI), bacteremia, neonatal sepsis, endocarditis, and abdominal and pelvic infection (1). In addition to the resistance to the antibiotics of their choice, especially vancomycin and gentamicin (GM), several virulence factors have contributed to the persistence of enterococci in nosocomial infections, including collagen-binding adhesin of Enterococcus faecalis (Ace), aggregation substance (Asa1), cytolysin (CylA), enterococcal surface protein (Esp), and gelatinase (gelE) (2, 3).

Because of the steadily increasing antibiotic resistance of E. faecalis strains within healthcare facilities, it is necessary to perform epidemiological investigations and identify the possible sources of contamination. Recently, multiple-locus variablenumber tandem repeat analysis (MLVA) based on variations in the number of repeats at certain variable number tandem repeat (VNTR) loci has been known as a useful method for genotyping purposes of several bacterial pathogens, including E. faecalis (4). However, in our country, E. faecalis displayed a high frequency, and there are insufficient studies on molecular characteristics of enterococci obtained from pediatric infections (5, 6). In the current study, we aimed to determine the virulence genes and MLVA types (MTs) among E. faecalis strains isolated from an Iranian Children's Hospital over four years.

2. Material and Methods

2.1 Bacterial isolates

Sixty-seven pre-identified *E. faecalis* strains were selected from our previous study (7). These isolates were collected from clinical samples (urine (n=58), blood (n=4), cerebrospinal fluid (n=2), a wound lesion (n=1), a tracheal secretion (n=1), and a peritoneal fluid (n=1)) of children during December 2011 to July 2014. Most *E. faecalis* strains originated from outpatients (n=22), emergency (n=9), and urology hospitalized patients (n=8). Antimicrobial susceptibility testing, bacterial genomic DNA extraction, and detection of vancomycin (*vanA*) and an aminoglycoside (aac(6')-Ie-aph(2'')-Ia) resistance genes had been performed in our previous study (7).

1.2 Virulence genes detection

The genes encoding virulence factors (*cylA*, *gelE*, *esp*, *ace*, *asa1*) were targeted by means of PCR using pre-extracted DNA by the boiling method (7, 8).

2.3 Molecular analysis

On the basis of Titze-de-Almeida study, seven repeat loci (aceB, espA, espC, efa2, efa3, efa5, efa6) were selected for molecular analysis of isolates (9). Briefly, the PCR protocol consisted of a predenaturation step at 95°C for 5 min and a final extension at 72°C for 5 min. Thirty cycles of 95°C for 45 s, 50 s at 66.3°C (for *aceB*), 56°C (for *espA* and efa6), 59°C (for efa2), 55.2°C (for efa3), and 49 °C (for efa5) were performed. Amplified amplicons were analyzed on 1% agarose gels and product bands were reflected with KBC power loading dye (GelRed Nucleic Acid Gel Stain, 10,000× in water, Kawsar Biotech Co., Tehran, Iran) under UV illumination. The number of copies in each locus was estimated based on the size of the repeats and the PCR bands. The MLVA type (MT) was given based on one or more band differences; thus, MTs were described as isolates sharing $\geq 85.7\%$ similarity. All results were rounded down and up if they were < 0.5 and > 0.5, respectively, and were considered 0.5 itself if they were = 0.5.

3. Results

The pattern of antibiotic resistance of each strain and the genes involved in vancomycin and GM resistance are shown in Table 1. The prevalence of *gelE* and *aceB* virulence genes was high (73% and 62%), followed by *asa1*, *esp*, and *cylA* found in 58%, 31%, and 7% of isolates, respectively.

The results of MLVA typing are shown in Table 1. The MLVA typing revealed 52 variable number tandem repeat (VNTR) patterns belonging to 38 MTs

1874

(Table 1). Eighteen isolates were assigned into two common types (13 as MT1 and 5 as MT2). The MT1 isolates were recovered from different parts of the hospital from 2011-2012. It is worth mentioning that, the most common pattern of antibiotic resistance in MT1 isolates was associated with pattern gentamicin, ciprofloxacin, erythromycin, and clindamycin (AP, GM, CIP, E, and CD). Moreover, *aac* (6')-*Ie-aph* (2")-*Ia* resistance gene and *gelE+asa1* virulence pattern in MT1 strains were frequent.

4. Discussion

Similar to previous reports, our findings showed a relatively high prevalence of *asa1*, *ace*, and *gelE* among *E. faecalis* strains (1, 10). Studies revealed that antibiotic resistance genes and *asa1* are located on a plasmid that can be transferred simultaneously. In addition, more than half of the *E. faecalis* strains isolated from nosocomial infections harbored genes encoding gelatinase and aggregation substance (11). The MLVA typing of 67 *E. faecalis* isolates revealed 52 VNTR patterns and 38 MTs. In a study conducted by Walecka *et al.*, MLVA of 56 *E. faecalis* isolates

revealed 40 VNTR patterns and MTs (4). In another study in Poland, 111 VNTR patterns and MTs were determined on 153 *E. faecalis* strains (12).

This high degree of heterogenicity among isolates may indicate the persistence of enterococci strains. The MT1 strains were isolated from different parts of the Hospital during the first two years of the study. Most of these isolates have GM, CIP, E, CD, and gelE+asa1 pattern, and an aac(6')-Ie-aph(2")-Ia resistance gene, which probably indicates a dominant clone compatible with the Hospital setting in our study Center and was transferred to outpatients referred to the Medical Center. Despite observing these isolates in two years of our study, more samplings from different Wards are required to identify and prevent their spread because, if the MT1 strains are not controlled, they will spread resistance and virulence factors to sensitive isolates. In conclusion, MT1, a common MT in E. faecalis isolates, circulated in different Wards of the Hospital in 2011-2012. Moreover, E. faecalis isolates with multiple resistance were common in our study Hospital.

T 11 4	D1 / '	1		1			1.			c	1	1	•	C	
Shia I	Phonotynic	and c	tonotynic	characterici	her of P	+ +/	100011C	etraine	1colated	trom (1111109	comnl	QC 111	tour v	100rc
I abit I	• I IICHOLVDIC	anu e	2CHOLVDIC	characteris		2.10	iecuiis	suams	isolateu	nom	Junica	samo	co m	IOUI V	Cars
		··· · · · · · · · · · · · · · · · · ·	J J												

MLVA Type	Virulence genes	Resistance genes	Resistance pattern ^d	Time of isolation $(m/y)^c$	Sample ^b	isolate	Ward ^a
1	asa1, gelE	aac(6')-Ie-aph(2")-Ia	GM, CIP, E, CD	12/2011	Urine	1	
1	asa1, gelE	aac(6')-Ie-aph(2")-Ia	GM, CIP, E, CD	12/2011	Urine	2	
8	ace, esp, gelE,	-	E, CD	1/2012	Urine	3	
1	asa1, gelE	aac(6')-Ie-aph(2")-Ia	GM, CIP, E, CD	1/2012	Urine	4	
1	-	aac(6')-Ie-aph(2")-Ia	GM, CIP, E, CD	2/2012	Urine	5	
9	-	-	E, CD	3/2012	Urine	6	
9	ace	-	GM, CIP, E, CD	5/2012	Urine	7	
19	ace, gelE	-	CIP, E, CD	6/2012	Urine	8	
11	ace	-	GM, CIP, E, CD	6/2012	Urine	9	
2	ace, asa1, esp, gelE	aac(6')-Ie-aph(2")-Ia	GM, E, CD	6/2012	Urine	10	
4	-	-	GM, CIP, E, CD	7/2012	Urine	11	<u> </u>
12	ace, esp, gelE	-	GM, CIP, E, CD	7/2012	Urine	12	Outpatient
4	-	-	CIP, E, CD	8/2012	Urine	13	
1	asa1, gelE	aac(6')-Ie-aph(2")-Ia	CIP, E, CD	10/2012	Urine	14	
27	ace, esp	-	CIP, E, CD	10/2012	Wound	15	
28	ace, esp, gelE	-	CIP, E, CD	11/2012	Urine	16	
29	ace, asa1, esp, gelE	-	CIP, E, CD	2/2013	Urine	17	
32	ace, asa1, esp, gelE	-	CIP, E, CD	5/2013	Urine	18	
33	ace, gelE	-	CIP, E, CD	5/2013	Urine	19	
3	ace, gelE	-	CIP, E, CD	7/2012	Urine	20	
34	ace, esp, gelE	-	CIP, E, CD	7/2012	Urine	21	
36	gelE	vanA	AP, CIP, E, CD	1/2014	CSF	22	

Table 1 Continue									
1	asa1, gelE	aac(6')-Ie-aph(2")-Ia	GM, CIP, E, CD	1/2012	Urine	23			
15	ace, esp, gelE	-	E, CD	1/2012	Urine	24			
16	ace, asal	-	CIP, E, CD	1/2012	Urine	25			
17	ace, asa1, cylA, gelE	-	CIP, E, CD	3/2012	Urine	26			
10	-	-	GM, CIP, E, CD	5/2012	Urine	27	Emergency		
7	ace, asal	-	GM, E, CD	6/2012	Urine	28			
11	ace, gelE,	-	GM, CIP, E, CD	5/2013	Urine	29			
13	gelE,	-	GM, AP, E, CD, SYN	9/2013	Urine	30			
37	ace, asal, gelE,	aac(6')-Ie-aph(2")-Ia	GM, CIP, E, CD	7/2014	Blood	31			
6	asal, gelE	aac(6')-Ie-aph(2")-Ia	GM, CIP, E, CD	12/2011	Urine	32			
1	asal, gelE	aac(6')-Ie- $aph(2'')$ -Ia	GM, CIP, E, CD	3/2012	Urine	33			
1	asa1. gelE	aac(6')-Ie- $aph(2'')$ -Ia	GM. CIP. E. CD	5/2012	Urine	34			
5	ace, asal, gelE	-	CIP, E, CD	6/2012	Urine	35	I Inclass.		
22	ace, asal	-	CIP, E, CD	7/2012	Urine	36	Urology		
26	ace, gelE	-	GM, CIP, E, CD	8/2012	Urine	37			
1	asa1, gelE	aac(6')-Ie-aph(2")-Ia	GM, CIP, E, CD	2/2013	Catheter	38			
3	ace, gelE	-	CIP, E, CD	7/2013	Urine	39			
1	asa1, gelE	aac(6')-Ie-aph(2")-Ia	GM, CIP, E, CD	3/2012	Urine	40			
1	asa1, gelE	-	GM, CIP, E, CD	3/2012	Urine	41			
2	ace, asa1, esp, gelE	aac(6')-Ie-aph(2")-Ia	GM, E, CD	3/2012	Urine	42	Dialysis Contor		
18	asa1, cylA, esp, gelE	aac(6')-Ie-aph(2")-Ia	GM, CIP, E, CD	5/2012	Urine	43	Center		
2	ace, asa1, esp, gelE	aac(6')-Ie-aph(2")-Ia	GM, E, CD	6/2012	Urine	44			
1	ace, asa1, gelE	vanA, aac(6')-Ie-aph(2")-Ia	GM, AP, CIP, E, CD	5/2012	Blood	45			
5	ace, asa1, gelE	-	CIP, E, CD	5/2012	Urine	46			
25	ace, esp	-	E, CD	8/2012	Ascites	47			
31	ace, asa1, esp, gelE	-	CD	5/2013	CSF	48	Surgery		
8	ace, asa1, gelE	-	CIP, E, CD	5/2013	Urine	49			
6	asal, gelE,	aac(6')-Ie-aph(2")-Ia	GM, AP, CIP, E, CD	12/2011	Urine	50			
7	ace, asal, esp	-	CIP, E, CD	10/2012	Urine	51	Neonatal		
3	ace, gelE,	-	CIP, E, CD	5/2013	Urine	52			
30	ace, asal, gelE	-	GM, CIP, E, CD	4/2013	Tracheal aspirate	53	NICU		
35	esp, gelE	vanA	GM, AP, CIP, E, CD	11/2013	Blood	54	EICU		
2	ace, asa1, esp, gelE	aac(6')-Ie-aph(2")-Ia	GM, E, CD	6/2012	Urine	55	Digestive		
13	asal	-	GM, CIP, E, CD	4/2013	Blood	56	Neurology		
14	ace, asa1, cylA, esp, gelE	-	E, CD	1/2012	Urine	57			
20	ace, asa1, cylA, esp, gelE	-	CIP, E, CD	6/2012	Urine	58			
21	ace, asa1, gelE	-	CIP, E, CD	6/2012	Urine	59			
32	ace	-	GM, E, CD	7/2012	Urine	60			
35	-	-	CIP, E, CD	7/2012	Urine	61			
23	ace, gelE	-	GM, CIP, E, CD	8/2012	Urine	62	Unknown		
24	asal	-	CIP, E, CD	8/2012	Urine	63			
38	ace, asa1, cylA, esp. gelE	-	CIP, E, CD	9/2012	Urine	64			
10	ace, asal, esp	-	GM, CIP, E, CD	12/2012	Urine	65			
1	gelE	aac(6')-Ie-aph(2")-Ia	AP, CIP, E, CD	12/2012	Urine	66			
2	ace, asal, esp, gelE	-	CIP, E, CD	2/2013	Urine	67			

^a NICU: Neonatal Intensive Care Unit, EICU: Emergency Intensive Care Unit
^b CSF: Cerebrospinal fluid
^c m / y month / year
^d GM: Gentamicin, AP: Ampicillin, CIP: Ciprofloxacin, E: Erythromycin, CD: Clindamycin

1876

Acknowledgment

Not applicable.

Authors' Contribution

RB and ME designed the study. FJ and ASM drafted the manuscript. ASM performed data analysis. All authors provided intellectual input to the study and read and approved the final manuscript.

Ethics

The study was approved by the Ethics Committee of Tehran University of Medical Sciences and all methods were performed in accordance with the relevant guidelines and regulations. Consent to participate is not applicable for this study because the isolates included in the study were obtained from existing clinical collections routinely assembled as part of laboratory practices of university hospitals.

Conflict of Interest

The authors declare that they have no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Funding

This research has been supported by Tehran University of Medical Sciences & health Services grant 97-02-30/38781.

References

- Heidari H, Hasanpour S, Ebrahim-Saraie HS, Motamedifar M. High Incidence of Virulence Factors Among Clinical Enterococcus faecalis Isolates in Southwestern Iran. Infect Chemother. 2017;49(1):51-6.
- Beigverdi R, Sattari-Maraji A, Jabalameli F, Emaneini M. Prevalence of Genes Encoding Aminoglycoside-Modifying Enzymes in Clinical Isolates of Gram-Positive Cocci in Iran: A Systematic Review and Meta-Analysis. Microb Drug Resist. 2020;26(2):126-35.
- 3. Yang JX, Li T, Ning YZ, Shao DH, Liu J, Wang SQ, et

al .Molecular characterization of resistance, virulence and clonality in vancomycin-resistant Enterococcus faecium and Enterococcus faecalis: A hospital-based study in Beijing, China. Infect Genet Evol. 2015;33:253-60.

- 4. Walecka E, Bania J, Dworniczek E, Ugorski M. Genotypic characterization of hospital Enterococcus faecalis strains using multiple-locus variable-number tandem-repeat analysis. Lett Appl Microbiol. 2009;49(1):79-84.
- Emaneini M, Hosseinkhani F, Jabalameli F, Nasiri MJ, Dadashi M, Pouriran R, et al. Prevalence of vancomycin-resistant Enterococcus in Iran: a systematic review and meta-analysis. Eur J Clin Microbiol Infect Dis. 2016;35(9):1387-92.
- Emaneini M, Khoramian B, Jabalameli F, Beigverdi R, Asadollahi K, Taherikalani M, et al. Prevalence of highlevel gentamicin-resistant Enterococcus faecalis and Enterococcus faecium in an Iranian hospital. J Prev Med Hyg. 2016;57(4):E197-E200.
- Sattari-Maraji A, Jabalameli F, Node Farahani N, Beigverdi R, Emaneini M. Antimicrobial resistance pattern, virulence determinants and molecular analysis of Enterococcus faecium isolated from children infections in Iran. BMC Microbiol. 2019;19(1):156.
- Yu J, Shi J, Zhao R, Han Q, Qian X, Gu G, et al. Molecular Characterization and Resistant Spectrum of Enterococci Isolated from a Haematology Unit in China. J Clin Diagn Res. 2015;9(6):DC04-7.
- Titze-de-Almeida R, Willems RJ, Top J, Rodrigues IP, Ferreira RF, 2nd, Boelens H, et al. Multilocus variablenumber tandem-repeat polymorphism among Brazilian Enterococcus faecalis strains. J Clin Microbiol. 2004;42(10):4879-81.
- 10. Al-Talib H, Zuraina N, Kamarudin B, Yean CY. Genotypic variations of virulent genes in Enterococcus faecium and Enterococcus faecalis isolated from three hospitals in Malaysia. Adv Clin Exp Med. 2015;24(1):121-7.
- 11. Mundy LM, Sahm DF, Gilmore M. Relationships between enterococcal virulence and antimicrobial resistance. Clin Microbiol Rev. 2000;13(4):513-22.
- 12. Sadowy E, Sienko A, Hryniewicz W. Comparison of multilocus variable-number tandem-repeat analysis with multilocus sequence typing and pulsed-field gel electrophoresis for Enterococcus faecalis. Pol J Microbiol. 2011;60(4):335-9.