References
1.Najafi H, FallahMehrabadi MH, Hosseini H, Kafi ZZ, Hamdan AM,
Ghalyanchilangeroudi A. The first full genome characterization of an
Iranian foot and mouth disease virus. Virus Res. 2020;279:197888.
2.Mahapatra M, Parida S. Foot and mouth disease vaccine strain selection:
current approaches and future perspectives. Expert review of vaccines.
2018;17(7):57791.
3.Brito B, Pauszek SJ, Hartwig EJ, Smoliga GR, Vu LT, Dong PV, et al. A
traditional evolutionary history of foot-and-mouth disease viruses in
Southeast Asia challenged by analyses of non-structural protein coding
sequences. Sci Rep. 2018;8(1):1-13.
4.Yang B, Zhang X, Zhang D, Hou J, Xu G, Sheng C, et al. Molecular
mechanisms of immune escape for foot-and-mouth disease virus.
Pathogens. 2020;9(9):729.
5.Jamal SM, Belsham GJ. Foot-and-mouth disease: past, present and future.
Veterinary research. 2013;44(1):1-14.
6.Cedillo-Barrón L, Foster-Cuevas M, Belsham GJ, Lefèvre F, Parkhouse
RME. Induction of a protective response in swine vaccinated with DNA
encoding foot-and-mouth disease virus empty capsid proteins and the 3D
RNA polymerase. J Gen Virol. 2001;82(7):1713-24.
7.Belsham GJ, Normann P. Dynamics of picornavirus RNA replication
within infected cells. J Gen Virol. 2008;89(2):485-93.
8.Fry EE, Newman JW, Curry S, Najjam S, Jackson T, Blakemore W, et al.
Structure of Foot-and-mouth disease virus serotype A1061 alone and
complexed with oligosaccharide receptor: receptor conservation in the face
of antigenic variation. J Gen Virol. 2005;86(7):1909-20.
9.Wang S, Zeng X, Yang Q, Qiao S. Antimicrobial peptides as potential
alternatives to antibiotics in food animal industry. Int J Mol Sci.
2016;17(5):603.
10. Boparai JK, Sharma PK. Mini review on antimicrobial peptides,
sources, mechanism and recent applications. Protein and Peptide Letters.
2020;27(1):4-16.
11. Torres NI, Noll KS, Xu S, Li J, Huang Q, Sinko PJ, et al. Safety,
formulation and in vitro antiviral activity of the antimicrobial peptide
subtilosin against herpes simplex virus type 1. Probiotics and antimicrobial
proteins. 2013;5(1):26-35.
12. Barlow PG, Svoboda P, Mackellar A, Nash AA, York IA, Pohl
J, et al. Antiviral activity and increased host defense against influenza
infection elicited by the human cathelicidin LL-37. PLoS One.
2011;6(10):e25333.
13. Tripathi S, Tecle T, Verma A, Crouch E, White M, Hartshorn
KL. The human cathelicidin LL-37 inhibits influenza A viruses through a
mechanism distinct from that of surfactant protein D or defensins. The
Journal of general virology. 2013;94(Pt 1):40.
14. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, et
al. The ClusPro web server for protein–protein docking. Nat Protoc.
2017;12(2):255-78.
15. Attwood TK, Gisel A, Eriksson N-E, Bongcam-Rudloff E.
Concepts, historical milestones and the central place of bioinformatics in
modern biology: a European perspective. Bioinformatics-trends and
methodologies. 2011;1.
16. Ranjbar M, Ebrahimi M, Shahsavandi S, Farhadi T, Mirjalili A,
Tebianian M, et al. Novel applications of immuno-bioinformatics in
vaccine and bio-product developments at research institutes. Archives of
Razi Institute. 2019;74(3):219-33.
17. Kundrotas PJ, Zhu Z, Vakser IA. GWIDD: genome-wide protein
docking database. Nucleic Acids Res. 2010;38(suppl_1):D513-D7.
18. Morris GM, Lim-Wilby M. Molecular docking. Molecular
modeling of proteins: Springer; 2008. p. 365-82.
19. Rashidian E, Forouharmehr A, Nazifi N, Jaydari A, Shams N.
Computer-aided design of a novel poly-epitope protein in fusion with an
adjuvant as a vaccine candidate against leptospirosis. Curr Proteomics.
2021;18(2):113-23.
20. Rashidian E, Gandabeh ZS, Forouharmehr A, Nazifi N, Shams
N, Jaydari A. Immunoinformatics approach to engineer a potent polyepitope fusion protein vaccine against Coxiella burnetii. Int J Pept Res
Ther. 2020;26(4):2191-201.
21. Forouharmehr A. Engineering an efficient poly-epitope vaccine
against Toxoplasma gondii infection: a computational vaccinology study.
Microb Pathog. 2021;152:104646.
22. Miller SI. Antibiotic resistance and regulation of the gramnegative bacterial outer membrane barrier by host innate immune
molecules. MBio. 2016;7(5):e01541-16.
23. Reygaert W. An overview of the antimicrobial resistance
mechanisms of bacteria. AIMS Microbiol. 2018;4:482–501.
24. Blair J, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ.
Molecular mechanisms of antibiotic resistance. Nature reviews
microbiology. 2015;13(1):42-51.
25. Du D, Wang Kan X, Neuberger A, Van Veen HW, Pos KM,
Piddock LJ, et al. Multidrug efflux pumps: structure, function and
regulation. Nature Reviews Microbiology. 2018;16(9):523-39.
26. Pen G, Yang N, Teng D, Mao R, Hao Y, Wang J. A review on
the use of antimicrobial peptides to combat porcine viruses. Antibiotics.
2020;9(11):801.
27. Izadpanah A, Gallo RL. Antimicrobial peptides. J Am Acad
Dermatol. 2005;52(3):381-90.
28. Huang HN, Pan CY, Chen JY. Grouper (Epinephelus coioides)
antimicrobial peptide epinecidin-1 exhibits antiviral activity against footand-mouth disease virus in vitro. Peptides. 2018;106:91-5.
29. Sobrino F, Sáiz M, Jiménez Clavero MA, Núñez JI, Rosas MF,
Baranowski E, et al. Foot and mouth disease virus: a long known virus, but a
current threat. Vet Res. 2001;32(1):1-30.
30. Pereira H. Foot-and-mouth disease. Virus diseases of food
animals. 1981:333-63.
31. Lea S, Hernéndez J, Blakemore W, Brocchi E, Curry S,
Domingo E, et al. The structure and antigenicity of a type C foot and mouth
disease virus. Structure. 1994;2(2):123-39.