Alizadeh, A. (2014). Soil, Water, Plant Relationship. Mashhad, Iran: Sajjad University of Technology. (in Persian)
Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), D05109.
Allen, R., Tasumi, M. & Trezza, R. (2002). SEBAL (Surface Energy Balance Algorithms for Land) Advanced Training and User’s Manual. Idaho Implementation, Version 1.0.
Awad, M. M. (2019). An Innovative Intelligent System Based on Remote Sensing and Mathematical Models for Improving Crop Yield Estimation. Information Processing in Agriculture, 6(3), 316-325.
Bastianssen, W. G. M., & Ali, S. (2003). A New Crop Yield Forecasting Model Based on Satellite Measurements Applied Across the Indus Basin, Pakistan. Agriculture, Ecosystems and Environment; (94), 321-340.
Boegh, E., Soegaard, H., Broge, N., Hasager, C.B., Jensen, N.O., Schelde, K., and Thomsen, A. (2002). Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sensing of Environment; 81: 179-193.
Field, C. B., Randerson, J. T., & Malmström, C. M. (1995). Global Net Primary Production: Combining Ecology and Remote Sensing. Remote Sensing Environment, 51, 74-88.
Food and Agriculture Organization Statistical Data (FAOSTAT). 2021. FAO Statistical Data. (Available at: http://faostat3.fao.org/faostat-gateway/go/to/home/E)
Liaqat, M. U., Cheema, M. J. M., Huang, W., Mahmood, T., Zaman, M. & Khan, M. M., (2017). Evaluation of MODIS and Landsat multiband vegetation indices used for wheat yield estimation in irrigated Indus Basin. Computers and Electronics in Agriculture, (138), 39-47. (in Persian)
Lobell, D. B., Asner, G. P., Ortiz-Monasterio, I., & Benning, T. L. (2003). Remote Sensing of Regional Crop Production in the Yaqui Valley, Mexico: Estimates and Uncertainties. Agriculture, Ecosystem and Environment, (94), 205-220.
Loveimi, N., Akram, A., Bagheri, N., & Hajiahmad, A. (2019). Prediction of Canola Yield in Some of Growth Stages by Using Landsat Satellite, OLI Sensor. Iranian Journal of Biosystems Engineering, 50(1), 101-113. (in Persian)
Marofi, S. Mousavi, R. & Nasiri Gheidari, O. (2017). Investigation of Spatial and Temporal Variation of Water Requirement of Ghazvin Desert, Using METRIC Algorithm and Landsat Images. Geographical Researches, 32(2), 80-92. (in Persian)
Moayeri, M. (2019). Determination of water requirement and comprehensive irrigation management of canola farms. Karaj: Agricultural Engineering Research Institute. (in Persian)
Monteith, J. L. (1972). Solar Radiation and Productivity in Tropical Ecosystems. Journal of Applied Ecology, 9(3), 747-766.
Moran, M. S., Maas, S. J., & Pinter, P. J. (1995). Combining Remote Sensing and Modeling for Estimating Surface Evaporation and Biomass Production. Remote Sensing Reviews, 12(3-4), 335-353.
Panek, E. & Gozdowski, D., (2021). Relationship between MODIS Derived NDVI and Yield of Cereals for Selected European Countries. Agronomy, 11(2), 340.
Panek, E., Gozdowski, D., Stępień, M., Samborski, S., Ruciński, D. & Buszke, B., (2020). Within-Field Relationships between Satellite-Derived Vegetation Indices, Grain Yield and Spike Number of Winter Wheat and Triticale. Agronomy, 10(11), 1842.
Pratt, S. (2013). Satellite crop estimate too low: Analysts. The Western Producer. Retrieved March 28, 2018, from https://www.producer.com/2013/10/satellite- crop-estimate-too-low-analysts.
Rembold, F., Atzberger, C., Savin, I., & Rojas, O., (2013). Using low resolution satellite imagery for yield prediction and yield anomaly detection. Remote Sensing, 5(4), 1704-1733.
Rouse, J., Haas, R., Schell, J., and Deering, D. (1973). Monitoring Vegetation Systems in the Great Plains with ERTS. Third ERTS Symposium NASA; 309-317.
Roznik, M., Boyd, M., & Porth, L. (2022). Improving crop yield estimation by applying higher resolution satellite NDVI imagery and high-resolution cropland masks. Remote Sensing Applications: Society and Environment 25, (100693).
Uossef Gomrokchi, A. (2021). Estimation of Potential Yield and Yield Gap of major crops in Qazvin irrigation network. Water Resources Engineering, 14(50), 75-88. (in Persian)
Valashjerdi, M., Hamzeh, S., Moghadasi, M. & Shini Dashtgol. (2019). Modeling the sugarcane crop yield by using a composite model based on remote sensing data. Journal of Water and Soil Conservation, 25(6), 141-158. (in Persian)
Wahap, N., Shafri, H.Z. (2020). Utilization of Google Earth Engine (GEE) for land cover monitoring over Klang Valley, Malaysia. In: IOP Conference Series: Earth and Environmental Science, vol 1. IOP Publishing, pp 012003.
Weber, V.S., Araus, J.L., Cairns, J.E., Sanchez, C., Melchinger, A.E. & Orsini, E. (2012). Prediction
of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes. Journal of Field Crops Res, 128, 82–90.
Younesi, M. (2022). Feasibility of Using Precision Irrigation Process in Improving Agricultural Water Productivity Index in Wheat Crop (M.Sc. Thesis), Tehran University, Iran. (in Persian)
Younesi, M., Mashal, M. & Yousef Gomrokchi, A. (2022). Estimation of Real Evapotranspiration of Wheat and Rapeseed Using SEBAL Algorithm (Case Study: Esmaeil Abad Agricultural Research Station in Qazvin Province). Iranian Journal of ECOHYDROLOGY, 9(3), 475-487. (in Persian)
Zahirnia, A.R. & Matinfar, H.R. (2016). Evaluate the yield of irrigated wheat fields on the basis of data obtained from Landsat 8 in the southwestern province of Khuzestan. First National Conference
on Remote Sensing and GIS in the earth sciences. Atmospheric and Oceanic Sciences Research Center-in. College of Agriculture, Shiraz University. (In Persian)
Zamani-Noor, N., Feistkorn, D. (2022). Monitoring Growth Status of Winter Oilseed Rape by NDVI and NDYI Derived from UAV-Based Red–Green–Blue Imagery. Agronomy, 12, 1-16.
Zare khormizi, H., Tavili, A., & Ghafarian Malamiri, H. R. (2021). Estimation of Actual Evapotranspiration Using SEBAL Algorithm and Comparison with Improved FAO 56 Standard Evapotranspiration with KC-NDVI Relationship. Iranian Journal of Remote Sensing & GIS, 13(3), 73-92. (In Persian)
Zhang, H., Chen, H., & Zhou, G. (2012). The model of wheat yield forecast based MODIS-NDVI-A case study of Xinxiang. International Society for Photogrammetry and Remote Sensing Conference, Melbourne, Australia.
Zhu, W., Pan, H., He, H., Yu, D., & Hu, H. (2006). Simulation of Maximum Light Use Efficiency for some Typical Vegetation Types in China. Chinese Science Bulletin, 51(4), 457-463.